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Abstract—Existing metadata-private messaging systems are
either non-scalable or vulnerable to long-term traffic anal-
ysis. Approaches that mitigate traffic analysis attacks of-
ten suffer from unrealistic and unimplementable assump-
tions or impose system-wide bandwidth restrictions, degrad-
ing usability, and performance. In this work, we present a
new model for metadata-private communication systems—
deferred retrieval—that guarantees traffic analysis resistance
under realistic, implementable user assumptions. We intro-
duce Sparta systems, practical and scalable instantiations
of deferred retrieval that are distributable, achieve high
throughput, and support multiple concurrent conversations
without message loss. Specifically, we present three Sparta
constructions optimized for different scenarios: (i) low-latency,
(ii) high-throughput in shared-memory environments (multi-
thread implementations), and (iii) high throughput in shared-
nothing (distributed) environments. Our low latency Sparta
supports latencies of less than one millisecond, while our high-
throughput Sparta can scale to deliver over 700,000 100B
messages per second on a single 48-core server.

1. Introduction

Today’s messaging systems, like WhatsApp, iMes-
sage, and Signal, use end-to-end encryption to protect
message contents. However, this does not hide meta-
data—information about who communicates with whom,
when, and how much—which remains visible to systems
and network observers. Metadata is highly sensitive and
valuable; as former NSA general counsel, Stuart Baker, said,
“metadata absolutely tells you everything about somebody’s
life. If you have enough metadata, you don’t really need
content”. For example, if an employee sends encrypted files
to a journalist who later exposes company corruption, the
employee becomes a prime suspect based on metadata alone.
Messaging systems must therefore protect both content and
metadata to be truly private.

Metadata privacy has been a topic of significant interest
over the past decades. Despite this, Tor [1] remains the only
widely used metadata-private communication system. Tor is
well-known to be vulnerable to global adversaries capable of
observing all network links; however, the lesson of Tor is not
that the non-global adversary model is too weak (though it
is), but that traffic analysis is a much more pertinent concern

[2], [3]. While significant research efforts have been devoted
to designing scalable, metadata-private messaging systems
secure against global adversaries [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], the problem of
traffic analysis has received much less attention.

Traffic Analysis Attacks. Traffic analysis attacks aim to
infer protected information, such as who is talking to whom,
by identifying correlations in traffic patterns at users. For
example, consider a trusted messaging service that never
discloses how a message was routed. Such a system would
be secure against a global adversary by assumption of trust.
However, if we observe Alice sending a message to the
service and Bob receiving a message shortly after, this
strongly suggests they are communicating. These attacks are
statistical and improve with time and additional observations
[2], [18], [19], [20].

Mitigating Traffic Analysis Attacks & Limitations. To
mitigate traffic analysis attacks, existing systems either
broadcast or impose global bandwidth restrictions. Broad-
cast is robust against traffic analysis attacks since messages
are sent to all potential recipients simultaneously, hiding the
specific sender-receiver pairs. However, broadcast becomes
infeasible as the number of users increases.

Bandwidth restrictions ensure all users’ traffic looks
identical, eliminating correlations between communicating
users. These come in two forms: restrictions on input rates
and restrictions on output rates.

Asynchronous systems [13], [21], [22], [23] impose
restrictions on output rates, building these restrictions into
the system by implementing a set of mailboxes for each
user with fixed size, k. Senders deposit messages into these
mailboxes, and receivers explicitly fetch to receive their
messages. On a fetch, the entire mailbox, i.e., k messages,
is downloaded whether or not the mailbox is full. While
asynchronous systems allow users to fetch independently of
the other users, to prevent traffic analysis, many assume all
users will fetch at a fixed rate. [13], [21] Combined with
the fixed mailbox size, this results in a globally fixed output
rate, denoted kout. While there is often nothing to prevent
users from fetching more frequently, these systems face an
additional problem. If a user receives more messages than
the capacity of the mailbox, messages collide, corrupting
them and preventing their correct delivery. Mailbox sizes,



k, are most often 1, [13], [21] effectively prohibiting users
from having multiple concurrent conversations.

Synchronous systems, e.g., mixnets [4], [7], [8], [9],
[10], [16], [24], [25] and secret sharing based schemes [5],
[6], [12], [26], impose restrictions on input rates by making
assumptions about user behavior, i.e., all users will send
k = 1 messages each round—the “one message assump-
tion”. At the end of the round after messages are accrued,
all messages are randomly permuted and delivered. Because
all users are bound by the same round schedule and are
required to send equal volumes of messages, this results in a
globally fixed input rate, denoted kin. But this assumption is
unrealistic and unimplementable. Users cannot be expected
to be online to send a message each round, especially
in mobile environments where they may lose connectivity,
and systems cannot control how users behave. Groove [11]
addressed this problem by designing components to enforce
that one message per user is submitted each round to its
internal mixnet, but still suffers from globally set input rates.

While global bandwidth restrictions like the one message
assumption prevent traffic analysis, [27], [28], [29] they lead
to significant and previously unacknowledged problems in
real deployments. If a user of a synchronous system sends at
a higher rate than the round rate, these additional messages
will be delayed/deferred to subsequent rounds. By Little’s
law [30], we know that this outbound message queue will
grow without bound, translating to unbounded latency for
these highly active users. If, in response to this, we increase
the bandwidth rate to be higher than the rate of the most
active user, this will result in much higher overhead for low-
activity users. Thus, even if all users could realistically meet
this assumption, global bandwidth restrictions would lead to
significant performance problems.

Our goal is to build practical metadata-private messag-
ing systems that are secure in the long term. Toward this
goal, we raise two questions.

1) Can systems provide long-term traffic analysis re-
sistance with practical performance and realistic
user assumptions? And if so,

2) Can they be securely and scalably implemented?

In this work. We affirmatively address both questions as we
summarize in Fig. 1. In §3.2 we introduce a new model—
deferred retrieval—for how metadata-private messaging sys-
tems can operate so that traffic patterns at communicating
users do not reveal correlations. Deferred retrieval provides
traffic analysis resistance under realistic user assumptions,
without imposing global bandwidth restrictions, and with
practical latencies and overheads in deployed systems. In
§4, we introduce Sparta systems, which securely and effi-
ciently support deferred retrieval. These systems are scal-
able, achieve high throughput, and support multiple con-
current conversations without message loss. Sparta systems
implement deferred retrieval using Intel SGX and oblivi-
ous algorithms and data structures. Our implementations of
Sparta ensure that all operations on the server leak no more

than users’ traffic patterns, which themselves are secure
against traffic analysis due to deferred retrieval.

We present three Sparta constructions that provide the
listed system and usability properties optimized for different
use cases. Sparta-LL is optimized for low-latency and based
on oblivious data structures. It supports latency of less than
one millisecond on database sizes of 220. Sparta-SB is based
on sort and can scale to deliver over 700,000 100B messages
per second on a single 48-core server with a database of size
220. Sparta-D is distributable and can scale to database sizes
of 223 with less than one second of latency.

Contributions. We offer three core contributions that lead
to these results:

1) First, we precisely define traffic analysis resis-
tance. To achieve this, we propose a new frame-
work for describing traffic leakage that is system-
independent and can be used to categorize all exist-
ing work. This is the first framework that captures
long-term statistical leakages and identifies the spe-
cific features that enable traffic analysis attacks.
Using this, we observe that we can relax existing
proposals for leakage without disclosing informa-
tion that could be used for long-term correlation of
communicating users.

2) We propose a new model for metadata private
communication systems—deferred retrieval—that
achieves traffic analysis resistance with less strin-
gent assumptions on users than prior work. We
evaluate the practical costs of this model under real
email workloads and find that it is orders of mag-
nitude cheaper than existing proposals for traffic
analysis systems and supports sub-minute latencies
with low network overhead. This remains true even
when we compare our systems with non-optimal
parameters to prior works with optimal parameters.
To our knowledge, this is the first evaluation of the
costs associated with methods for achieving long-
term traffic analysis resistance.

3) Finally, we present three implementations of de-
ferred retrieval. Sparta-LL is optimized for low
processing latency, Sparta-SB is optimized for high
throughput on existing workloads, and Sparta-D is
designed to be distributable. These systems im-
pose no global bandwidth restrictions on users,
place no assumptions on the number of contacts
users can have, and do not suffer from message
loss like many prior systems. In our experimen-
tal evaluation, we show that our systems achieve
high throughput. Our implementations are aligned
with the Signal Messaging App, which combines
hardware enclaves (Intel SGX) with oblivious al-
gorithms and data structures to implement private
contact discovery.

Limitations. The latency and overhead of deferred retrieval
is highly dependent on the fetch rates that users choose.
Setting these rates is not trivial, as they must be set to



accommodate users’ future behavior (prior work neglected
this problem by setting rates to, e.g., one message per
round). Properly setting these rates in practice would require
additional study of users’ behavior, e.g., [31], [32]. We
address this limitation in §5.1 by evaluating our systems
using progressively less information about the optimal rate.

Though deferred retrieval will always outperform global
bandwidth restrictions (see §3.2), the degree of its advantage
is dependent on characteristics of the workload. Unfortu-
nately, suitable datasets are rare. Enron [33] is the only
dataset that has previously been used in the context of
anonymity research [34]. Seattle [35] by contrast is a new
dataset that we introduce for this purpose.

2. Preliminaries

Trusted Execution Environments/Hardware Enclaves.
Our systems are implemented using trusted execution en-
vironments/hardware enclaves (e.g., Intel SGX [36], ARM
TrustZone [37], AMD Enclave [38]). A hardware enclave re-
sides on an untrusted operating system and offers enhanced
security functionalities to ensure confidential computing,
including sealing, isolation, and remote attestation. Sealing
enables the enclave to encrypt data using its private sealing
key. Remote attestation verifies that the enclave has been
initialized with the expected code and data. Isolation ensures
the secure separation of a portion of the system’s memory,
known as the Enclave Page Cache (EPC), which stores user
data and executable code. Our Sparta implementation targets
Intel SGXv2 [39], which introduced flexible and dynamic
EPC memory allocation and larger EPC sizes, allowing
applications to scale larger. Importantly, hardware enclaves
do not hide memory access patterns [40], [41] or control-
flow [42], thus it is standard to ensure that the algorithms
running in hardware enclaves are oblivious [43], [44], [45],
[46], [47], [48], [49], [50].

Obliviousness. An algorithm or data structure is considered
oblivious if, for any two sequences of operations of the
same size, the resulting memory accesses and code traces
are computationally indistinguishable—even assuming the
presence of an adversary who can observe all memory ac-
cesses and network communications. Intuitively, this means
that the execution of an algorithm leaks only the length of
the inputs and is independent of the value.

Oblivious RAM (ORAM). ORAM [51], [52], [53], [54],
[55], [56] is a compiler that transforms memory access
patterns to conceal the original access sequences. This en-
sures that the observed memory accesses do not reveal any
information about the logical accesses. ORAM is defined
by two main protocols: setup(λ,N) and access(op, i, v).
The setup protocol initializes an ORAM of size N with
security parameter λ, while access returns the element at
index i if op = read, or writes v at index i and returns a
dummy element if op = write. The access protocol manages
the actual memory accesses, ensuring they remain indistin-
guishable from random, thereby hiding both the operations
performed and the index i.

Oblivious Map (OMAP). An OMAP is a privacy-
preserving variant of a regular map that conceals the type
and content of operations. OMAP is defined by three main
protocols: setup(λ,N), put(k, v), and get(k). The setup
protocol is defined similarly to that for ORAMs. The put
protocol inserts a new (k, v) pair into the data structure.
The get protocol retrieves the value associated with a key.
All sequences of data accesses (get/put) of equal length are
indistinguishable (see Wang et al. [57] for details).

Oblivious Sort. An oblivious sorting algorithm sorts an
array of N elements without revealing any information
about the array beyond its length. We use bitonic sort [58],
an efficient and well-known oblivious sorting algorithm.
The algorithm has a time complexity of O(N log2 N) and
performs sorting through a series of compare-and-swap op-
erations, making it suitable for parallel execution. We imple-
ment the multi-threaded bitonic sort from Ngai et al. [49],
which is in practice the most efficient choice for a single
server. Other oblivious sorting algorithms with O(N logN)
complexity, including the bucket sort from Ngai et al. [49],
perform worse in a single-server scenario.

Oblivious Compaction. Given an array of N elements,
where some elements are tagged with a bit, an oblivious
compaction algorithm [46] arranges the elements such that
the tagged elements appear at the beginning of the list
without disclosing the tags (and any other information about
the memory access patterns). Order-preserving compaction
maintains the relative order of the tagged elements.

Oblivious Selection. Oblivious selection is a primitive that
allows us to select one of two values based on a condition
without branching. Oblivious selection of a or b based on a
condition c, can be computed as (!(c− 1)&a)|((c− 1)&b).
We include if statements in our pseudocode, but this is for
readability only. In reality we implement these conditionals
using oblivious select.

Adversary Model. Like most prior work in the anonymity
literature, we focus on a global adversary that can monitor
all network links. However, unlike much prior work, we
extend the adversary in three important ways. (1) We assume
an active adversary that can modify all network traffic and
that can participate in the protocol. (2) We assume the
adversary can observe traffic for an arbitrarily long time.
(3) In alignment with prior works combining obliviousness
with hardware enclaves [43], [44], [45], [46], [47], [48],
[49], [50], we assume a powerful attacker who can observe
network traffic, compromise all server software up to and
including privileged software, and control the operating
system, but cannot breach the secure processor or access
its secret key. This attacker can observe memory accesses,
data on the memory bus, in main memory, and code traces.
Hardware side-channel attacks [41], [59], [60], [61], [62]
(e.g., power consumption analysis) and denial-of-service
attacks are out of scope. Techniques to mitigate such attacks
from prior works can be integrated alongside our approach.



System Weak Assumptions/TA Resistance Correctness Global Bandwidth Limitation Throughput

Sabre [21] ✓ ✗ Yes 200KB/s
Pung/Seal PIR [22] ✓ ✗ Yes 256KB/s
Groove [11] ✓ ✓ Yes 3.6MB/s
Sparta (this work) ✓ ✓ No 53MB/s

Figure 1. Our work, Sparta, is the first system that imposes no system-wide bandwidth restrictions on inbound and outbound traffic while providing
long-term traffic analysis resistance under realistic user assumptions. Specifically, users must not fetch based on their actual received traffic. The lack
of global bandwidth restrictions implies that in a real deployment, Sparta, operating according to the assumptions of deferred retrieval, will perform
significantly better than existing work (see §5.1). Unlike some prior works, Sparta is correct, i.e., it will not drop messages if users receive more than a
globally set k messages between fetches. The throughput is provided for context. We arrived at these numbers by taking best-reported numbers in existing
works’ evaluations independently of the database sizes. The throughput for Sparta is taken from Sparta-SB on the Legacy workload with a database size
of 223, while the throughput for Sabre, Pung, and Groove is on databases of size 215, 32K, and 2M, respectively.

Performance Metrics. For our systems evaluations, we
focus on three metrics: latency, throughput, and network
overhead. In this context, latency denotes the time taken
to process messages by the system, which we denote lp,
and throughput is the number of messages a system can
process per unit time. This latency is one component of the
actual latency users can expect when using traffic analysis
resistant systems. In this paper, we expand metrics to also
include latency due to assumptions and parameters set by
the system. To our knowledge, no other work has considered
these as part of the costs of their systems or attempted to
measure these costs. Formally,

L = lp + lu + ls, (1)

where in addition to lp we consider the latency from mes-
sages waiting at the user before it can be sent lu, and ls,
the latency due to the message waiting at the server before
they can be delivered. We also consider network overhead,
which is the amount of network traffic sent/received per
relevant party per unit time. That is, we say, Alice’s overhead
is 42B/s if she must send this traffic to maintain traffic
analysis resistance independently of her actual traffic. These
metrics are common in the theoretical literature with trilem-
mas from Das et al. [63] suggesting an inherent tradeoff
between traffic analysis resistance, latency, and overhead.
As an example, to illustrate the sources of these quantities,
consider a synchronous system such as a mixnet [4] that
requires users to send exactly one message per round to
prevent intersection attacks [18], [27], [34]. The overhead is
one message per round. If users wish to send two messages
in a round, this second message will be deferred to the
next round, increasing latency through lu. Similarly, if the
system sets a longer round parameter to allow all users to
participate, this would increase latency through ls.

3. Traffic Analysis Resistance via Deferred Re-
trieval

For a messaging system to truly be secure in the long-
term, it must (1) operate in such a way that traffic does not
leak correlations between communicating users and (2) be
implemented in such a way that systems leak only those
permitted traffic patterns. In this section, we address the

first point. We develop deferred retrieval—a new model for
how metadata-private communication systems can operate
so that traffic patterns do not leak correlations between
communicating users. Toward this end, we first develop
a framework for quantifying leakages and reasoning about
traffic analysis resistance and then design deferred retrieval.

3.1. Traffic Analysis Resistance

Currently in the literature we do not have a formal,
system-independent way to quantify or reason about the
security of systems’ traffic leakages. We know certain points
in the space are insecure against traffic analysis, e.g., Tor [1]
has surveys devoted to attacks against it [3], while others,
e.g., broadcast are not vulnerable to traffic analysis. In this
section we describe the first such framework.

Modeling Traffic. As the model underpinning our frame-
work we propose communication states. In communication
states we assume that messages are split/padded to a fixed
length (e.g., 100B) and re-encrypted to prevent input and
output from the system from being linked on features of the
traffic. This allows us to exclude content from consideration,
assuming a computationally bounded adversary.

Definition 3.1 (Communication State). A communication
state, C, is a set of tuples (s, r, t), where s denotes the
sender, r denotes the recipient, and t denotes the time the
message was sent.

One advantage of this model is that it specifies nothing
about the system. Earlier work defined batches for syn-
chronous systems in a similar way [64], [65], but because
they did not include timing information they (1) could only
capture synchronous systems, (2) could not capture suscep-
tibility to intersection attacks, and (3) could not capture all
traffic that was sent through a system over the long-term.

Traffic Leakage. The goal of metadata-private messaging
systems is to reduce the amount of information adversaries
learn about communication states. We can formalize this
loss of information by specifying leakage functions on
communication states in the style of MPC [66], [67], [68]
and Searchable Encryption [69], [70], [71], [72], [73], [74],
[75], [76], [77], [78]. In general, leakage functions are
composed of two subleakages: the leakage on the sender



Family Leakage Traffic Analysis Resistant

Onion Routers (St, Rt+ϵ) ✗
Broadcast St ✓
Synchronous (single round) (St, R) ✓
Synchronous (multi-round) (St, R[ti,ti+1]) ✗
Synchronous (one-message in) R[ti,ti+1] ✓

Figure 2. The leakages of some common families of metadata private messaging systems. Families marked with “✓” are secure against traffic analysis,
while those marked with “✗” are not.

side of the communication system and the leakage on the
receiver side of the communication system. Though there are
many possible leakage functions, we consider the following
as they are particularly useful for modeling existing work.

1) St = {(s, t)|(s, r, t) ∈ C}, the sender and time of
every message. This captures that s sent a message
at time t, but contains no information about who
the message was addressed to.

2) R[ti,ti+1] = {r|(s, r, t) ∈ C and t ∈ [ti, ti+1]}, all
receivers who were sent a message during some in-
terval. This leakage is implemented by synchronous
systems that batch and permute messages, thus
breaking any link between the time they were sent
and the time they were delivered beyond that it was
sent during some time interval.

3) Rf(t) = {(r, f(t))|(s, r, t) ∈ C and t ≤ f(t)}, all
receivers and some function, f(t) ≥ t. This models
continuous systems that may add some random de-
lay [79] before delivering messages. The condition
that f(t) ≥ t captures that messages cannot be
delivered before they are sent. And finally,

4) R = {r|(s, r, t) ∈ C}, the total volume of messages
receiver by each user. This contains no timing in-
formation per tuple but can be used to compute the
total number of messages a user received during the
lifetime of the system. Importantly, because there
is no timing information, an adversary cannot learn
any information about the volume of message a user
received during a smaller time interval.

Traffic Analysis & Resistance. Using these leakages we
can quantify the leakages of existing systems and assump-
tions and reason about the properties of leakage functions
that permit and do not permit traffic analysis attacks. In Fig.
2 we give the leakages of some existing schemes.

For example, the leakage of onion routers (Tor [1]), can
be captured as (St, Rt+ϵ), where ϵ > 0 is some small ran-
dom delay due to uncertainty in networking. By observing
this leakage, we can simply match tuples (s, t) ∈ St and
(r, t + ϵ) ∈ Rt+ϵ on t to reconstruct the tuple (s, r, t),
deanonymizing the connection. This agrees with the obser-
vation that Tor is vulnerable to traffic analysis [3].

On the other hand, broadcast’s network patterns are
determined from St alone, since for each (s, t) ∈ St we
simply deliver a message to all recipients. Broadcast is
not vulnerable to traffic analysis [80]. In fact, with this
leakage the only way we could match users would be if

there was a discernible correlation in sending behavior, e.g.,
if every time Alice sends Bob sends (responds) shortly after.
Unfortunately, broadcast is not scalable.

Synchronous systems batch and permute requests, break-
ing the connection between input and output within batches.
For a single round then, the timing of the output is inde-
pendent of the input. We express this leakage as (St, R),
because only the timing of sent messages and the volume
of received messages is leaked. With more than one round,
we can observe the output of multiple batches, thus the
leakage is (St, R[ti,ti+1]). Utilizing changes in the sender
and receiver traffic, adversaries can correlate communicating
users using intersection/statistical disclosure attacks [27],
[34], [81]. Intersection attacks are not possible with a sin-
gle observation [18] because we cannot observe changes
between observations.

The conventional defense to intersection attacks is to
assume that all users will participate with a fixed k messages
per round (most often k = 1 [5], [6], [9], [11], [13], [21]).
This fixes the sender side of the leakage function, reducing
the leakage to R[ti,ti+1], and ensures that variations in the
recipient traffic cannot be correlated with variations in the
sender traffic [27], [82].

Though synchronous systems can be made secure
against traffic analysis by assuming that all users send one
message in every round, such an assumption is unrealistic
[11] and unenforceable, except by banning users that do
not participate in each round [83]. Even if it were, we
show in §5.1 that achieving this leakage by imposing the
same bandwidth restriction globally on all users of the sys-
tem leads to prohibitively high costs. The leakage function
(St, R), on the other hand, is attractive for two reasons.
First, and most importantly, it is the leakage function of
single-round synchronous systems, which are acknowledged
to be secure against traffic analysis [28], [84]. Second, it
inherently allows users to receive different amounts of traffic
and thus does not impose global bandwidth restrictions. Un-
fortunately, single-round synchronous systems are unsuited
to messaging because users cannot respond to messages.

3.2. Deferred Retrieval

Deferred retrieval is a new way for a metadata-private
messaging system to operate such that traffic does not
leak correlations between communicating users. It is not a
particular system, but rather is a class of systems that can
be implemented in a variety of ways (see §4) and a variety



send(r,m;US,MS)

1: next← U(0, 2l − 1)
2: rand← U(0, 2l − 1)
3: (head, tail)← US.update(r, (head, next))
4: MS.access(write, rand, (r, tail, next,m))

fetch(r, k;US,MS)

1: (first, last)← US.get(r)
2: x = first, M = {}
3: while |M | < k do
4: if x ̸= last then
5: (r, curr, next,m)←MS.access(read, x, ∅)
6: x = next
7: else
8: (−,−,−,m)←MS.access(read, dummy, ∅)
9: end if

10: M = M ∪ {m}
11: end while
12: US.put(r, (x, last)
13: return M

Figure 3. The operations of Sparta-LL. Because US and MS are oblivious
data structures, accesses leak nothing beyond their size. We assume for
traffic analysis resistance that k is at most a function of (St, R).

of trust models. Deferred retrieval is a sub-category of
asynchronous systems designed to meet our traffic leakage
goal, (St, R), under weak assumptions on the behavior of
users. In it users push messages into a system’s state and
later fetch ki messages. However, it differs from existing
asynchronous systems in two important points.

First, prior systems were designed to only fetch globally
set k messages (most often k = 1). If a user receives less
than k messages, their true number of messages will be
padded to k to avoid leaking this volume and exposing
them to traffic analysis attacks. If a user received more
than k messages these would be lost. In deferred retrieval,
rather than dropping messages if a user receives more than
k messages between fetches, these messages are just de-
ferred to a subsequent fetch following a first in, first out
convention—hence the name deferred retrieval. In order to
correctly deliver these messages the system must maintain
some internal state between deliveries, that is the system is
inherently asynchronous.

The second difference is a result of our new traffic
leakage, (St, R). Prior systems set the fetch rate, determined
by k, globally for all users; however, in deferred retrieval,
ki is set per user. In order to meet the leakage (St, R)
there are two assumptions on user behavior. (1) These ki
must not vary in response to the actual volume of traffic
waiting for delivery in the system but must be set based on
an estimate of users’ overall traffic rates. While an exact
estimate is impossible without knowledge of future traffic,
users often can estimate the order of magnitude of messages
they receive in some interval. For example, a user may not
know they receive exactly 42 messages per day, but they may
know that they typically receive less than 100. (2) Related
to the first, users may submit fetch requests on their own

schedule so long as the timing of fetch requests does not
leak any more information than (St, R).

This flexibility allows deferred retrieval to use strictly
less overhead than globally set bandwidth restrictions for the
same latency. Suppose ki is the largest number of messages
each user receives in some time-frame, L. This implies that
if each user fetches ki messages per L time, no message
will be deferred. If we set a global fetch rate such that no
message will be deferred, k must be at least maxi(ki). The
overhead for the system setting ki per user is less than the
overhead for the system setting a global fetch rate, because∑

i

ki ≤ nmax
i

(ki). (2)

onymoy This relaxations allows for many attractive usability
properties [11], but all reduce to allowing users to vary their
download rates. While existing work sets download rates
globally, deferred retrieval sets them per user. We denote this
bandwidth restriction by k∗out to signify a per user variable
number of messages exiting the system. This gives us the
flexibility to change rates, so long as these changes do not
depend on users’ actual received traffic. For example, users
on mobile networks can reduce their rate without leaking
information about their communication patterns. Users can
go offline without becoming vulnerable to traffic analysis—
this is not possible in synchronous systems that require users
to participate in every round. If they are willing to tolerate
additional latency while they are asleep, for example, they
can reduce their rates. Conversely, if they have been offline
and wish to catch up on their messages they can issue a
larger fetch request without compromising security.

Unfortunately, this functionality requires additional
primitives over those implemented in existing work. Specif-
ically, systems must enable asynchronicity—messages may
be deferred to subsequent fetches, so state must persist
between these operations. Relatedly, these extra messages
should not be lost, implying variably sized mailboxes. Fi-
nally, systems must support efficient fetching and padding
to variable numbers of messages. Existing systems do not
support this functionality.

4. System Designs

In §3 we designed a model for a system with traffic
leakages that are not vulnerable to traffic analysis. In this
section we design secure implementations of deferred re-
trieval, i.e. when the system processes requests, it should
leak no more than the traffic at users. We implement three
separate systems for different use cases. The first, Sparta-LL,
is based on oblivious data structures [57] and is optimized
for low latency in cases where the number of users is
smaller than the message database. The second, Sparta-SB
is optimized for high-throughput where the number of users
is close to the size of the message database. Finally, Sparta-
D, combines ideas from both and achieves high throughput
with large message stores due to its distributability.

Sparta systems implement deferred retrieval and thus
are all asynchronous, meaning they have internal state that



messages are sent into and fetched from, and support vari-
able ki fetch sizes. Existing work suffers from scalabil-
ity problems even without these additional primitives, so
we instead turn to hardware enclaves running oblivious
algorithms to implement deferred retrieval. Beyond offering
strong security, hardware enclaves have the advantage that
they can be deployed within single organizations in contrast
with systems that rely on distributed trust. This deployment
problem has not been resolved [85], and the lack of deployed
globally secure systems in the anytrust model casts doubt on
its real-world feasibility. In contrast, Signal has successfully
deployed hardware enclaves running oblivious algorithms to
support oblivious contact discovery for millions of users.

Oblivious Multiqueues (OMQs). Despite the different
goals of these systems, the intuition behind how each Sparta
system offers security is the same. Each system supports
the primitives required to efficiently implement deferred re-
trieval, i.e., asynchronicity and variably sized mailboxes and
fetches. They do this by implementing a data structure we
call an oblivious multiqueue (OMQ). OMQs are simply sets
of queues, with each queue representing a user’s mailbox.
OMQs support three functions: setup(λ,N), push(i,m),
and pop(i, k). The setup function takes a security parameter
and a total capacity for the queues. A push operation takes
a mailbox identifier, i, an element, m, and inserts m at the
tail of queue i. A pop operation takes a mailbox, i, and a
value, k, and returns the first k elements from queue i. A
multiqueue is oblivious if the execution of push and pop
does not depend on the values of the inputs, but only the
lengths, i.e., the execution of a pop for one mailbox should
be indistinguishable from a pop for a different mailbox,
though the execution can depend on k, the number of ele-
ments to return. This guarantees that when executed within
a hardware enclave that hides the values of the operands,
incoming and outgoing messages cannot be linked based on
how the system operates. This functionality can be used to
implement deferred retrieval, where a send corresponds to
a push and a pop corresponds to a fetch.

4.1. Sparta — Low Latency

The goal of Sparta-LL is to implement a low-latency
data structure for storing and retrieving messages. Sparta-LL
is composed of two components: a user store and a message
store. The user store is implemented as an oblivious map
[43] and relates user identifiers to the head and tail of items
in the message store. The message store is implemented as
a non-recursive ORAM (i.e., PathORAM [51]) and stores
queue nodes, with each node storing a message and a pointer
to the next node in the ORAM, inspired by Wang et al.
[57]. On a send, the location of the tail of the recipient is
looked up in the user store, and the message is written at
that location in the message store. On a fetch, the user looks
up the head of their queue in the message store and follows
the pointer in each message node to the next message node.

Detailed Description. In Fig. 3 we give the pseudocode
for these routines. In a send, we take in a recipient and

a message and precompute the address for the next send
request so that this can be stored in the message node. We
then make a request to the user store to get the position for
the current message and update it with the new tail value.
Finally, we write back the message node with pointer to the
next message to the message store.

In a fetch we take in the recipient and the volume of
messages k to read. We first look up the pointer to the
head of the queue from the user store, then iterate k times,
making an oblivious request to the message store in each
iteration, getting the message and the pointer to the next
node in the queue. As long as we have not reached the
end of the message queue as denoted by last, we continue
making real accesses and otherwise make dummy requests
to the messages store to avoid leaking the true number of
messages the user has in the message store.

Security. In send, the security of the scheme reduces to
the primitives we use and the random accesses we make
to the message store. Because the user store is oblivious,
accesses to it do not reveal anything about the recipient.
Similarly, because we write back the node to the message
store as a random location only used once, subsequent reads
of this block will be independent. In fetch, we first fetch the
head of the queue from the user store, then iterate through
the first k messages. Note that leaking k is permissible so
long as k does not depend on the true volume of messages
a user receives. Within the loop, we give an if statement
for simplicity but implement this using oblivious select.
Thus this conditional leaks no information, because in both
cases we make accesses to the message store using fresh
randomness from the user store. Because the message store
is implemented as an oblivious RAM, these accesses leak no
information about the index of the record accessed. Finally,
updating the returned messages M occurs independently of
the branch taken, leaking no additional information.

Efficiency. In this scheme the cost of accessing the user
store is O(log2 N), where N is the number of users. This is
due to the underlying oblivious map structure. The message
store is a non-recursive PathORAM, so the cost of an access
is O(logM) [57] where M is the size of the message store.
Because we can assume that the number of users is much
less than the number of messages sent, this scheme is more
efficient than naive use of a sorted multimap. The total cost
of a send then is O(log2 N + logM), while the cost of a
fetch is O(log2 N + k logM).

4.2. Sparta — Sort-Based

The above scheme is asymptotically efficient, but it
requires that requests all be processed sequentially and thus
can be expected to have relatively low-throughput in practice
(see Fig. 8). Sparta-SB (sort-based) implements the same
oblivious multiqueue functionality but trades asymptotic
complexity to achieve much higher throughput by process-
ing batches of requests together. At a high level, this system
works by using bitonic sort [58] to group messages by
sender and time and then mark the appropriate messages for
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Figure 4. The fetch operation in Sparta-SB. This operation can be performed in an oblivious sort, a linear scan, and two oblivious compactions. Because
the volumes of the requests, ki, are public we simply take the first

∑
ki from the compacted messages for delivery. Because the volume of incoming

messages is public we take the first m messages from the new compacted message store as the next state of the message store.

ProcessBatch(S,R;MS)

1: Let S be a set of send requests, (r,m). Let R be a set of fetch requests, (r, k), where k is the number of messages.
2: For each (r, k) insert k tuples (r, dummy) into D.
3: Prepend M with R, then append S followed by D.
4: Using an order-preserving oblivious sort, sort M by receiver then request type (fetch < send < dummy).
5: Do a linear scan over M . On each new receivers fetch request, maintain a sum of the k. Then on the first non-fetch,

begin marking them until k elements have been marked.
6: Do an order preserving oblivious compact on the marked messages then take the top

∑
ki as the messages to

deliver.
7: Oblivious compact on the unmarked, non-fetch tuples, and take these as the new state of the message store.

Figure 5. The ProcessBatch routine of the Sparta Sort-Based solution. At a high-level it sorts message requests by users such that fetches appear first. It
then marks the first k elements and filters these out using two compactions. For a visual representation see Fig. 4.

delivery via a linear scan. Afterward we use two oblivious
compactions [46] to filter out messages that have been
marked for delivery and messages that should be deffered
for subsequent fetches (see Figs. 4 and 5).

Detailed Description. The above description leaves out
several important details. Suppose a user issues a fetch
for more messages than they currently have stored in the
database. We must take care to not mark messages meant
for other users. Because users could have zero messages,
for fetches of size k we must insert k dummy messages.
We then sort the message store so that fetches precede sent
messages precede dummy messages. This ensures that real
messages are fetched before dummy messages. As we scan
the database, on each new user identifier we obliviously
update the count of the remaining messages to fetch to k,
and then mark the first k messages. These conditionals are
implemented using oblivious selection. After we complete
the scan, messages that ought to be delivered have been
marked, and the messages that should be deferred to the
new state of the store are not. Notice that because each
ki is assumed to be public, we can compact and take the

first
∑

ki messages to deliver. Similarly, because we add
dummy messages, the size of the new dummy store will be
exactly the size of the old store plus the size of the new
send requests.

Security. The security of this scheme reduces to the obliv-
iousness of the primitives and the fact that the number of
sends and fetches are public. Because we first obliviously
sort and pad with k dummies, we are guaranteed that each
user has at least k elements, thus one user’s fetch will
never mark a message not addressed to them. The linear
scan similarly operates over the size of the messages store,
which is the sum of the prior sends and fetches. Within
the loop, all logic is implemented using oblivious selects,
thus our conditionals leak nothing about the contents of
requests. Finally, because compaction is oblivious and the
size of marked messages will be exactly the sum of ki, this
is oblivious and correct.

Efficiency. This solution is implemented in a single oblivi-
ous sort, one linear scan and two oblivious compacts. The
asymptotic costs of bitonic sort [58] and our compact rou-



tine [46] are O(M log2 M) and O(M logM) respectively,
thus the overall cost of the sort dominates, i.e. the cost is
O(M log2 M) where M is the size of the message store.

4.3. Sparta — Distributed

The above sort-based system achieves high throughput
as we see in §5.2, but with each batch we operate over
the entire size of the message store, limiting scalability. In
Sparta-D we describe a method for distributing this message
store into many smaller parts, while maintaining the exact
queueing semantics as in the prior systems. Sparta-D has
two components: a queue maintainer that maintains per user
metadata for queueing and a number of submaps used to
store messages. The queue maintainer is similar to the user
store in Sparta-LL, but is implemented using sort and com-
paction to improve throughput. The queue maintainer takes
incoming requests and translates them into unique object
identifiers. It then obliviously batches and sends requests for
these objects to the submaps. The submaps are themselves
oblivious, high-throughput maps. In Figs. 6 and 7 we show
the operation and the psuedocode of the queue maintainer.

Detailed Description. In Sparta-D the queue maintainer
translates requests to unique object identifiers. It does this by
maintaining a per user count of the the number of messages
read and sent. On send and fetch requests, requests are
sorted together so that counters from the user store can be
propagated and incremented in the requests during a linear
scan of the user store. Sparta-D then takes a hash of the
user’s identifier and these counters to create a unique object
ID for each object, such that the IDs of sends are fresh and
the IDs of fetches correspond to the IDs of previous sends.
These IDs are unique and randomly distributed, so using
Theorem 3 from Snoopy [86] we can obliviously construct
equal sub-batches of requests using only the number of
submaps and the number of requests, both of which are
public. This theorem gives cryptographic upper bounds on
the number of unique and randomly distributed IDs that
are mapped to individual submaps, thus by padding the
size of the subbatches to this upper-bound they reveal no
information about their composition. The submaps then
return the values associated with the object ID, and Sparta-
D computes an oblivious shuffle over the returned values to
hide which value came from which submap.

Security. The security of Sparta-D reduces to the oblivious
primitives. The sort is oblivious, as is the linear scan to
propagate request counters. The linear scan is over a publicly
sized data structure. The conditionals within the loop are
implemented obliviously, and the compaction to remove
requests for the submaps is also oblivious. Because at the
end of the construction of the indices all are unique and
randomly distributed, we can apply Theorem 3 from Snoopy
[86] to obliviously construct the sub-batches. These sub-
batches are sent to the submaps, which are implemented
as oblivious maps. The final shuffle ensures that delivering
the results of the fetches reveals no information about the
composition of the sub-batches.

Efficiency. Sparta-D is more efficient than Sparta-SB when
the size of the message store is much greater than the
number of users. In this case the extra costs of maintaining
the queues are outweighed by the fact that the message store
is sharded into roughly M/S chunks, where M and S are
the size of the message store and the number of submaps.
When these submaps are highly distributed, the cost of
Sparta-D is dominated by sorting at the queue maintainer.
This sort is over the number of users, N , and thus the
complexity is O(N log2 N).

5. Experimental Evaluation

We demonstrate the efficiency of deferred retrieval in
§5.1 and our Sparta systems in §5.2. These experiments1

give a complete study of the latency (see Eq. 1) and overhead
of Sparta under the assumptions of deferred retrieval. In
particular, §5.1 quantifies lu, ls (the latency due to assump-
tions for traffic analysis resistance), and overhead under real
email workloads, while §5.2 quantifies lp (the latency due
to system processing) and throughput.

Experimental Setup & Implementation. In our experi-
ments we use four datasets. Enron [33] and Seattle [35]
(see Appendix A) contain real email metadata, which we
use to evaluate the costs of traffic analysis resistance for our
system model. Using real user data is critical for evaluating
system assumptions and models, because lu and ls depend
on both the actual sending and receiving rates as well as the
assumptions made to prevent traffic analysis.

For our system evaluations we use two synthetic
datasets: the Storage workload and the Legacy workload. In
the Storage workload we fix the number of users and fetches
to 213 and set the size of the message store between 218 and
223. We cap the sizes of message stores at 223 because of
limitations in the scalability of sort. Relatedly, we set the
users to 213 to capture situations where users have many
messages stored at the server. This would occur if users
go offline and/or have many concurrent conversations. The
Legacy workload is taken from prior work [5], [13], [14],
[21] and assumes a one-to-one correspondence between
users, the size of the message store, and the number of
fetches issued. In all of these datasets we set the block size to
128B, which, in our Sparta systems, give a message payload
of 100B. The remaining bytes in each block are used by the
system to process messages.

We run our systems experiments on Microsoft Azure,
which provides support for Intel SGXv2 in the DC48sv3
class of VMs. These VMs have forty-eight cores and 384GB
memory. We implement our systems in Rust with ∼1600
lines of code using the Fortanix Enclave Development Plat-
form (EDP). We also provide parallel Rust implementations
ofoblivious primitives, such as bitonic sort [58] and OR-
Compact [46], using constant-time CMOV-based oblivious

1. Code for these experiments can be found at
https://github.com/ucsc-anonymity/sparta-model-evaluation and
https://github.com/ucsc-anonymity/sparta-experiments
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Figure 6. The queue maintainer in Sparta-D. The queue maintainer maintains pointers to the head and tail of each users queue. On a request it constructs
random object IDs, then obliviously pads batches of requests and sends them to the appropriate submaps. It then waits for responses from the submaps,
shuffles the responses and delivers them to the recipients.

CreateObjectIds(S,R;US)

1: Let S be a set of send requests, (r, send,m). Let R be a set of fetch requests, (r, fetch, k), where k is the number
of messages to fetch.

2: For each (r, k) expand them to k tuples (r, fetch, dummy) as R.
3: Take S and R together, and expand them to be of the form (r, op, b, first, last, key,m).
4: Take US and expand it to be of the form (r,ms, b, first, last, key,m)
5: Let M be the R, MS, and S sorted together by (r, op), where ms < fetch < send.
6: Let wi = 0, ri = 0, ki = 0, next = M [1].r
7: for (r, op, first, last, key,m) ∈M do
8: Set wi = first if op = ms, wi + 1 if op = send, wi if op = fetch.
9: Set ri = max(last, wi) if op = ms, ri + 1 if op = fetch, ri if op = send.

10: Set ki = key if op = ms, H(r, wi) if op = send, H(r, ri) if op = fetch.
11: Set b = 0 if next = r else 1.
12: Set next = M [i+ 1].r.
13: end for
14: Obliviously compact M on b, then take the top n records as US.
15: Obliviously compact M on op ̸= ms, then take the top |S|+ |R| as the requests.

Figure 7. Creating object IDs is one routine that Sparta-D runs at the load balancer. Object IDs are unique and uniform due to hashing, so we can apply
Theorem 3 from Snoopy [86] to obliviously construct batches of requests for the submaps.

swaps as in Sasy et al. [46]. We run each experiment ten
times, reporting the mean of the measurements.

5.1. Model Evaluation

To quantify the costs of assumptions and bandwidth
restrictions to achieve traffic analysis resistance we focus on
two metrics: latency, the time between when a message is
ready to send and when it is downloaded, and overhead, the
amount of network traffic a user is required to send/receive.

Baselines. In the introduction we taxonomize existing work
by the bandwidth restrictions they impose. There are two
classifications that existing work falls into: (1) global input

restrictions (denoted by kin), which contain synchronous
systems (e.g., mixnets, DC-net-like systems) [4], [6], [8],
[12], [16] and differentially private systems [9], [10], [11],
[25], and global output restrictions (denoted by kout), which
contain existing asynchronous systems [13], [21], [22]. In-
put restrictions are typically imposed by assumptions made
about user behavior (i.e. the one message assumption) and
are unimplementable, while output restrictions are typically
imposed by system design, e.g., in Pung [22], where users
can download a globally fixed k messages per round.

Measuring Latency and Overhead. By considering ideal
implementations of systems with zero processing latency
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Figure 8. The latency and throughput of Sparta-LL.

(lp = 0), we can compute latencies and overheads solely due
to bandwidth restrictions for traffic analysis resistance. This
reduces all systems with a particular bandwidth restriction
to a single ideal representation, specified only by their
bandwidth limitations. This approach favors prior systems,
which incur higher processing costs than Sparta due to their
use of more expensive primitives like PIR, FHE, and MPC
(i.e., lp is significantly lower in Sparta).

Given a send/fetch schedule, a number of messages to
send/fetch, and the sender, receiver, and timing of messages,
we can calculate the time messages enter and exit this ideal
system, as well as the amount of traffic per interval. As
an example, if we specify that all users must send exactly
one message per five second interval, if one user wants to
send two messages during that interval, the second will be
deferred to the subsequent interval increasing latency. If
a user has no messages to send in a particular interval, a
dummy message will be filled in, increasing overhead.

Given a maximum latency L, for deferred retrieval (de-
noted by k∗out), the optimal setting of the traffic rate to
meet latency L is ki, where ki is the maximum number
of messages received in an L length interval for each user.
For systems that set global bandwidth limitations (i.e., kin
and kout), the optimal setting to guarantee this latency is
k = maxi(ki). For example, in an ideal system if we
know that in one minute, we will not receive more that
one hundred messages we can set the download rate to one
hundred and never have messages delivered more than one
minute after they are sent.

In practice, these ki are unknown. However, we may
have some information about ki. Users may not know their
exact max traffic rate, but they may be able to upper-bound
the order of magnitude, i.e. ki < 10x for some x. For
example, most users could be confident that they will not
receive more than one thousand messages in a minute. By
increasing the base of this exponent the estimate of the
max rate becomes progressively poorer—using fewer bits of
information from the true ki—making it more realistic that a
user will be able to estimate x (an estimation factor equal to
one denotes perfect knowledge of the max rate; increasing
the estimation factor indicates increased uncertainty).

In order to give the advantage to existing work, we
compare these poor estimates of ki in our work to optimally
set k in existing work. We vary this estimation base between
2 and 512. We chose this range as a superset of the range
of reasonable user estimations. We set the maximum target
latency to be one minute to capture text messaging scenarios
where users expect to receive their messages quickly.

Results. We report our results in Fig. 9. The x-axis of these
figures represents the estimation factor for our work only,
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Figure 9. The average bandwidth per user to support sub-minute latency.
As user’s estimates get worse our system’s performance will eventually
converge to (but never be worse than) the performance of prior models. In
practice, estimates within a factor of 10 are sufficient to reduce network
overhead by multiple orders of magnitude.

so as we increase the estimation factor we get worse estima-
tions and worse overhead. Comparing optimal estimations
of k for prior work (kout) against optimal estimations of
the ki in our work (k∗out, x = 1), in Seattle we observe
that our model results in a 3400× reduction in required
traffic to support traffic analysis resistance. In absolute terms
this means that to support sending short 128B messages
with at most 60s of latency and achieving traffic analysis
resistance, the average user in our systems will download
just ∼6B/s, meaning the average user receives at most about
one message every 20 seconds. For comparison, streaming
music downloads 3KB/s worth of traffic. This is a practical
amount of traffic. Prior systems would have required they
receive and send at about 26 and 87 KB/s respectively. The
gap between k∗out and kout is smaller in Enron because the
spread because the average user’s traffic rate and the max
user’s traffic rate is smaller than in Seattle (see Appendix A).
Comparing optimal settings of ki both in our work and prior
work shows that our approach results in a 140× reduction
in overhead in Enron.

While optimally setting ki is unrealistic (both for exist-
ing work and ours), users of our systems only need coarse
estimates of ki to see significant improvements in overhead
compared to prior work. Estimations of the order of magni-
tude of the true value give us significant improvements over
prior work in both datasets. When users can estimate their
optimal rate to the nearest power of sixteen, e.g., our work
gives a 710× and 29× improvement over optimally set rates
in existing work for Seattle and Enron, respectively. Such
estimations may be practical for users in the real world.

With worse estimations (x increasing), as expected we
see that in both datasets the amount of traffic per user
increases and the graphs converge. There is also a significant
gap between kout and kin. The reason for this is that sender
traffic is more bursty than receiver traffic. This is due to the
presence of emails with many recipients in our datasets. We
split these into many emails (see Appendix A), following
prior work [34]. This results in large bursts of sent messages
and consequently increases max traffic rates for senders. We
note that as the target latency increases, the gaps between
our model and previous models widen. This is because the
number of messages sent/delivered per round grows faster
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Figure 10. Results of Experiment #1. We observe that Sparta-D gains a
significant performance advantage compared with Sparta-SB as the size
of the storage workload increases. This is more pronounced in distributed
Sparta-D, which has 15 submaps. On the Legacy dataset, which Sparta-SB
is optimized for, we observe it gains a large advantage even over distributed
Sparta-D.

over all users than it does for individual users as the length
of the round grows.

5.2. System Evaluation

Our Sparta systems are instantiations of deferred re-
trieval, providing practical traffic analysis resistance. We
demonstrate how Sparta systems scale using the Storage and
Legacy workloads as we increase their sizes (Experiment #1)
and as we use more compute resources (Experiment #2).

Experiment #1: Scaling the Message Database. In this set
of experiments, we vary the number of messages from 218

to 223. We run two instances of Sparta-D: the first runs a
version with the queue maintainer and five submaps running
in parallel, each with eight threads; the second runs a version
with the queue maintainer and fifteen submaps with forty-
eight threads. For Sparta-SB, we allocate a total of forty-
eight threads, equal to the resources in the non-distributed
Sparta-D. We report our results in Fig 10. We additionally,
run Sparta-LL with both workloads for sizes 220 and report
results in Fig. 8.

As we expect, Sparta-D enables greater scaling of the
message database than Sparta-SB on the Storage workload
(see Fig. 10a). In the single machine case Sparta-D and
Sparta-SB diverge as the size of the message store increases
with Sparta-D performing the same workload 3.2× faster
than Sparta-SB. In the case of the distributed Sparta-D
as we add resources in the experiment this trend is even
more pronounced. A Sparta-D instance with fifteen submaps
performs about 15× faster than Sparta-SB and about 5×
faster than the single machine Sparta-D instance. In these
experiments, especially on Storage, we observe that Sparta-
D and distributed Sparta-D initially are slower than Sparta-
SB due to the additional work done in the queue maintainer.
However, as the size of the database increases, its ability to
distribute contributes to better performance.

Sparta-D is not optimized for the Legacy dataset, while
Sparta-SB is. As we would expect, for the Legacy dataset,
Sparta-SB significantly outperforms even the distributed
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(d) Scaling Sparta-D on Legacy

Figure 11. Results of Experiment #2 results. In Figs. 11a and 11d we test
our systems on the Storage workload. We observe significant reductions
in latency and increases in throughput as we add compute resources to
Sparta-D. In Figs. 11c and 11d we observe must smaller benefits in adding
resources to Sparta-D when running the Legacy workload. This is expected
since Sparta-D is not optimized for this workload. On the other hand
Sparta-SB is, and performs very well, processing 220 message in about
1.5 seconds.

Sparta-D (see Fig. 10b). The reason for this, is that in Sparta-
D the queue manager is not distributed, so for large numbers
of users the work done at the queue maintainer becomes the
dominating factor. We note that on a single 48-core machine,
Sparta-SB increases throughput by 15× in a database of
size 223 compared with a 150-machine Groove cluster [11]
operating on a database of size 2M.

Sparta-LL predictably has low latency and throughput,
and thus is not suited for use as a general messaging system.

Experiment #2: Scaling Compute. We investigate how
Sparta-SB and Sparta-D scale with additional compute re-
sources on Storage and Legacy with fixed size of 220.
In the first experiments, we first measure the effect of
adding smaller amounts of resources for Sparta-SB, single-
machine Sparta-D, and distributed Sparta-D. For single-
machine Sparta-D we vary the number of submaps from one
to five with eight threads allocated to each and eight threads
allocated to the queue maintainer. To keep parity with single-
machine Sparta-D, for Sparta-SB we vary the number of
threads from sixteen to forty-eight in increments of eight.
For distributed Sparta-D, we allocate additional submaps.
In the second experiments, we investigate the scalability
of larger instances of distributed Sparta-D on Storage and
Legacy, also with size 220. We vary the number of submaps
from one to fifteen. We measure the time to fetch one
message per user and report our results in Fig. 11.

We see the results of the first experiments in Figs.
11a and 11c. For the Storage workload, Sparta-D benefits



the most from additional resources in the single machine
case, outpacing Sparta-SB by a factor of two. The reason
for this is that the workload is relatively small and thus
parallelizing the submaps significantly reduces the cost of
those operations. In the distributed case, the advantage of
distributing this workload is not as apparent because of
network latency (see Fig. 10a). In the sort-based version of
Sparta compute is not the limiting factor in either workload.

In the second set of experiments, we see a significant
improvement to the latency and throughput of distributed
Sparta when more machines are added to the storage work-
load (see Fig. 11b). Past ten submaps, the returns diminish
as the queue manager becomes the bottleneck. We see a
similar but much diminished trend when running distributed
Sparta on the legacy workload (see Fig. 11d). The reason
for this is that the bottleneck is the queue manager from the
beginning, thus we see only small gains as we distribute the
cost among more submaps.

6. Discussion

Our system model—deferred retrieval—reduces the cost
of long-term traffic analysis by orders of magnitude with
realistic user assumptions. With our Sparta systems we
demonstrate that deferred retrieval can be efficiently im-
plemented. This model was enabled by insights derived
from our leakage framework, namely that assumptions for
traffic analysis resistance can be relaxed and that global
bandwidth restrictions are not required for traffic analysis
resistance. Instead, traffic at recipients may vary so long as
these variations are not dependent on the timing of the input
to the system, thereby preserving independence of the input
and output of systems.

Though we implement our Sparta systems using Intel
SGX and oblivious algorithms, deferred retrieval is not
tied to this trust model. One direction of future research
is to support the functionality of deferred retrieval in con-
ventional implementation models, e.g., MPC/anytrust, FHE.
However, an advantage of our approach is that (1) systems
implemented using Intel SGX and oblivious algorithms are
performant enough to be deployed in the real world, as
demonstrated by Signal, and (2) they can be securely de-
ployed without requiring coordination between several dif-
ferent trust domains. Anytrust systems require non-colluding
parties to securely deploy them, which is a significant chal-
lenge in practice [85] as evidenced by the lack of deployed
systems following this implementation strategy.

As discussed in §5.1, deferred retrieval requires users’
download rates to be carefully set to minimize latency and
overhead due to queueing at the messaging service. The-
oretically, optimally setting rates in deferred retrieval will
always lead to better performance than optimally set global
bandwidth rates. However, the degree to which deferred
retrieval will outperform existing work depends on features
of the workloads. This is clear from the results of §5.1,
where the gap between our work and prior work is much
greater in the Seattle dataset than in the Enron dataset.
The features of datasets that lead to better performance

in our work are directly related to Eq. 2. From this, we
can reason that the greater the difference between the max
and average user’s rates, the better deferred retrieval will
perform compared to global traffic rates. These are exactly
the features we observe in Seattle and to a lesser degree
in Enron (see Appendix A). To keep the required traffic
rates low, workloads should also not be very bursty. Enron
is a very sparse dataset when compared with Seattle, thus it
is unsurprising that deferred retrieval would perform better
in Seattle. We believe that Seattle’s denser workload is
more representative of messaging applications. Email data
is not a perfect analog for the characteristics of messaging
systems, unfortunately suitable datasets are scarce. Because
of this, another direction for future research is to collect
such metadata or construct representative synthetic data.

Setting traffic rates in traffic analysis resistant systems
is a fundamental problem because these rates cannot vary
based on actual traffic. Though deferred retrieval dramati-
cally reduces the overhead and is feasible for low-bandwidth
messaging, high-bandwidth messaging (i.e., if users ex-
change video) will likely be too expensive. One approach to
dealing with this would be to allow users to update their traf-
fic rates at wide intervals (e.g., every week or month). This
violates security and theoretically enables traffic analysis
attacks over time; however, it is likely possible that allowing
some dependence between the input and output will not
translate into practical attacks. Making these relaxations in
a principled way is an interesting direction for future work.

7. Conclusion

We introduce the first long-term traffic analysis resistant
metadata-private communication system with practical per-
formance and realistic assumptions. The system is trivially
deployable and can support sub-minute latencies with less
network overhead than streaming music. Simultaneously,
we introduce the first system-independent framework for
quantifying traffic leakage. We designed a new model for
how systems can operate that allows them to achieve traffic
analysis resistance under reasonable assumptions with or-
ders of magnitude less overhead for the same latency. We
build three versions of this functionality on Intel SGX [36].
Our experiments demonstrate that Sparta-SB and Sparta-D
are significantly more scalable than existing works.
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Seattle Enron

Original 28,573,566 517,401
Split 56,057,732 3,130,272
Senders 54,900,229 3,130,272
Receivers 55,968,045 3,130,272
Time 53,824,943 2,879,512
Final Emails 52,765,722 2,879,512
Final Users 547,631 69,295

Figure 12. Cleaning Enron and Seattle. Emails with multiple recipients
are treated as multiple messages. We filtered the datasets on availability
of sender and receiver information. We also excluded messages with
timestamps that were outside the timeframe of the datasets. The numbers
reported are the number of valid messages after filtering.

Appendix A.
Datasets

We use two datasets to measure the costs of assumptions
and bandwidth limitations in traffic analysis resistant sys-
tems under real workloads. Enron [33] is a very well-used
dataset and has been used to evaluate intersection attacks
[34] in the context of anonymity research. Enron was made
public during litigation against the Enron Corporation and
contains internal email. Seattle [35] is a new dataset that
was gathered via a Freedom of Information Act request. It
contains all of the email sent to and from the Seattle city
government from January to March 2017.

To conduct our experiments we need three fields per
email: sender, recipient, and timestamp. Following the ap-
proach of Oya et al. [34], we split messages to many
recipients into many messages for one recipient. We then
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Figure 13. The probability density functions of Enron and Seattle. The
x-axis is the number of messages a sender/recipient receives, while the y-
axis is the probability that a user sends/receives that number of messages.
We see from this that Seattle is more skewed than Enron, with more mass
concentrated in the low numbers of messages and more extreme outliers.

filtered these datasets so that the sender and receiver fields
were present and the timestamp of the message was correct.
Here by correct we mean that the timestamp is between July
16, 1985 and December 3, 2001 for Enron (this corresponds
to the day it was founded to the day it filed for bankruptcy)
and from January 1, 2017 and April 1, 2017 for Seattle
(this corresponds to the stated time frame of the dataset). In
Fig. 12, we break down the number of messages after each
step in the cleaning process. Enron is well structured, so we
lose no messages due to unavailable sender and receivers,
though some are excluded based on timing. Seattle is not
as well structured and has numerous missing fields, thus we
exclude ∼ 6% of the total messages. After cleaning we are
left with 2.9M messages from 69K users in Enron and 53M
messages from 550K users in Seattle.

Enron and Seattle are very different datasets. Seattle is
far denser than Enron with 53M messages sent in three
months compared with 2.9M sent in over fifteen years. The
characteristics of users are also very different as we see in
Fig. 13. Though in both datasets more users send and receive
small numbers of messages, this is more pronounced in
Seattle. Seattle also has more extreme outliers in the number
of messages individual users send and receive than Enron.


