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ABSTRACT
In this work we design new searchable encryption schemes
whose goal is to minimize the number of cryptographic op-
erations required to retrieve the result—a dimension mostly
overlooked by previous works, yet very important in prac-
tice. Our main idea is to utilize compression so as to reduce
the size of the plaintext indexes before producing the en-
crypted searchable indices. Our solution can use any exist-
ing Searchable Encryption (SE) scheme as a black-box and
any combination of lossless compression algorithms, without
compromising security.
The efficiency of our schemes varies based on the leakage

exposed by the underlying application. For instance, for
private keyword search (more leakage), we demonstrate up
to 188× savings in search time, while for database search
(less leakage) our savings are up to 62×.
The power of our approach is better manifested when com-

bined with more secure, yet less practical, cryptographic
tools, such as Oblivious Random Access Memory (ORAM).
In particular while ORAM is known to be prohibitively ex-
pensive for large-scale applications, we show that our compress-
first-ORAM-next approach allows significant more efficient
index search time, reducing the time for executing a query
with result of size more than one million tuples from ap-
proximately 21 hours to 20 minutes.
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1. INTRODUCTION
Searchable Encryption (SE) enables a data owner to out-

source a document collection to a server in a private manner,
so that the latter can still answer keyword search queries
without learning too much information (formally modeled
through a leakage function) about the underlying document
collection and the queried keywords. SE schemes can be
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07.
DOI: https://doi.org/10.14778/3236187.3236218

used as an alternative to other approaches for searching en-
crypted data that are either very expensive (e.g., Oblivi-
ous RAM (ORAM) [27, 42, 49] and fully-homomorphic en-
cryption [23, 24]) or offer very weak security guarantees
(e.g., order-preserving encryption and deterministic encryp-
tion encryption [50, 4, 8, 43]). In a typical SE scheme, the
data owner prepares an encrypted index which is then sent
to the server. To perform a keyword search for a given key-
word w, a token t(w) is sent by the data owner to the server,
thus allowing the server to retrieve pointers to the encrypted
documents containing keyword w. SE is primarily used for
private keyword search but can also be used for database
searches, e.g., point queries. Recent works [11, 19, 22] used
SE to perform range searches as well as more expressive
queries often used in databases. In particular, Demertzis
et al. [19] reduced the problem of range search to keyword
search for multiple keywords using any SE scheme as a black
box illustrating the importance of SE in private databases;
any advances in SE directly impacts such works.
Since the first work on SE schemes proposed in 2000 [47],

all follow-up works with linear size encrypted index (e.g., [31,
11, 10, 6]) require the server to perform cryptographic opera-
tions (PRF1 evaluations) to retrieve the result, the number
of which is at least equal to the size of the query result.
The main reason is that for security purposes a query re-
sult r is stored in |r| random positions indexed by |r| values
each of them produced by a PRF. The server, given a token
t(w), has to expand it on |r| sub-tokens (using PRF eval-
uations) to locate, retrieve and return to the client all the
|r| pieces of the result. A PRF evaluation corresponds to
the most expensive operation in the search algorithm. The
main question we are therefore asking in this paper is:

Can we design SE schemes that retrieve the keyword search
result r with less than |r| cryptographic operations?

It is worth noting that previous SE schemes with constant
locality (ones that require few random accesses to retrieve
the result) (e.g.,[6, 21, 18]) have partially addressed this
problem by reducing the number of cryptographic opera-
tions required by the server and not the total number of
cryptographic operations. In this paper we take a more ag-
gressive approach and aim at reducing the total number of
cryptographic operations required by the protocol.
1A Pseudo Random Function (PRF) is a two-input function
F : {0, 1}∗×{0, 1}∗ → {0, 1}∗, where the first input is called
the key and the second is the input x. F can be distin-
guished from a truly random function only with negligible
probability. For a formal definition see [32].



Our Contributions. In this paper we propose a novel
SE scheme for private keyword and database search using
compression that addresses the above question.

1. Our SE scheme is the first in which the document iden-
tifiers matching a queried keyword can be retrieved
with potentially less cryptographic operations than the
result size |r|2. Informally we achieve that by storing
an encryption of a compressed index instead of a tradi-
tional encrypted index. While combining compression
and encryption can create security problems [33], we
leverage the already existing leakage of searchable en-
cryption to overcome this. We formally prove that our
scheme can use any secure SE scheme as black-box
(including the recent locality-aware SE schemes [6, 21,
18]), and any set of lossless compression algorithms
improving the search efficiency of the used black-box
by orders of magnitude without affecting its security.

2. We experimentally evaluate our scheme and show that,
for the case of keyword search, it achieves up to 188×
speedup in terms of search time, compared to the most
practical in-memory SE scheme. For the case of database
search (where there are no overlaps across results and
thus less structural leakage—see Section 2.2), we show
that our saving is still high, up to 62× for the location
description attribute; up to 203× for binary attributes
(see section 4). Our SE scheme can be used as black-
box in [19, 20] for further improving the performance
of private range/aggregation queries and in [29] for im-
proving boolean queries.

3. We combine our scheme with Oblivious RAM (ORAM)
approaches and propose Oblivious SE (OSE), a scheme
that answers private keyword and point queries with
ORAM-style security guarantees. Our OSE scheme re-
duces the index search time to access one million tuples
using a state-of-the-art ORAM scheme approximately
from 21 hours to 20 minutes. Our OSE scheme can
be used in the recent works for oblivious querying pro-
cessing [45, 57, 41] in order to further improve their
performance.

Technical Highlights. Our scheme uses two main tech-
niques: First it applies compression algorithms to reduce the
size of the unencrypted document identifiers; then it parti-
tions the compressed bit-string into λ bits and encrypts the
λ-bit words—in this way it better utilizes the fact that the
output of a PRF function is λ bits. Finally it uses any SE
scheme as a black box to store the encrypted/packed index.
Like we mentioned above, in the version of our scheme

with minimal leakage (database search), we need to com-
press identifiers that are uniformly distributed in the range
[0, n− 1], where n is the total number of documents in our
collection. We use EWAH [39] and FastPfor [38] since they
have been shown [52] to work well in practice when applied
to uniform data. Since the bottleneck in SE is the number of
cryptographic operations we execute both compression algo-
rithms for each keyword list and choose the best (by storing
some extra bits per keyword).
2Our scheme offers better search time for result sizes greater
than 1; otherwise our scheme requires one cryptographic op-
eration, just like other SE schemes. Thus, our scheme does
not have performance benefits when all documents contain
different words as well as in the database search for unique-
key attributes.

2. BACKGROUND
In this section we present the necessary related work, no-

tation and security definitions on searchable encryption. We
also provide the necessary background on the compression
algorithms that we use throughout this paper.

2.1 Prior Work
Searchable Encryption (SE). In 2000, Song et al. [47]
presented the first SE scheme, secure under Chosen Plain-
text Attacks (CPA)3. Goh [25] realized that CPA security
is not adequate for the case of SE schemes. Curtmola et
al. [16] introduced the state-of-the-art security definitions
for SE for both, non-adaptive settings, i.e. maintaining se-
curity only if all the queries are submitted at once in one
batch, as well as adaptive settings, i.e. maintaining security
even if the queries are progressively submitted, and provided
constructions that satisfy their definitions. In this paper, we
use the latter type of setting, namely the adaptive setting.
The work of Curtmola et al. [16] led the way for the appear-
ance of several new SE schemes [14, 51, 34, 31, 48, 30, 11,
40, 9], some of which allow updates [31, 48, 30, 40, 9], are
parallelizable [30] and extend SE to support more expressive
queries [29, 11, 22, 19]. For instance, [29] improved the effi-
ciency and security of boolean queries, [22, 19] reduced the
problem of range search to multi-keyword search using any
SE scheme as a black-box, and [22] extended [11] to support
substring, wildcard and phrase queries. In 2014, Cash et
al. [10] experimentally showed that in-memory SE cannot
scale to large datasets and provided the motivation for de-
signing locality-aware SE as a new research direction, where
locality is defined as the number of non-continuous reads
that the server makes for each query. Cash and Tessaro [12]
proved that a secure SE cannot simultaneously achieve lin-
ear index size, optimal locality and optimal read efficiency,
where read efficiency is defined as the number of additional
memory locations (false positives) that the server reads per
result item. Asharov et al. [6] proposed the first schemes
with optimal locality and space, and poly-logarithmic read
efficiency and soon after, Demertzis and Papamanthou [21]
published a tunable SE scheme that achieves various trade-
offs between read efficiency, locality and space requirements
outperforming in practice the locality optimal schemes of
Asharov et al. for similar space requirements. Along this
line, Demertzis et al. [18] proposed a new theoretical con-
struction which strictly improves the schemes of Asharov et
al. [6], thus providing the first SE with optimal locality, lin-
ear space and sub-logarithmic read efficiency.

Oblivious Random Access Memory (ORAM). ORAM
compilers introduced by Goldreich and Ostrovsky [27] can
compile any RAM program to a memory oblivious program,
i.e., the memory access pattern is independent of the input.
ORAM [27, 26, 28, 35, 42, 46, 49, 53, 54, 5] is a crypto-
graphic tool that can be used to further improve the secu-
rity guarantees of SE, such that ideal security is reached.
However, despite recent advances in the research area of
ORAM [49, 53, 54, 5] these tools remain prohibitively costly
for large database applications, as they achieve obliviousness
3A scheme is secure against Chosen Plaintext Attacks
(CPA) if the ciphertexts do not reveal any information about
the plaintext even if the adversary can observe the encryp-
tion of the messages of his choice. For a formal definition
see [32]



Table 1: Notation for keyword and database search.

Symbol Definition
Keyword Search

w keyword
D input document collection

D(w) set of document identifiers that contain keyword w
∆ dictionary containing all the keywords
N number of keyword-id pairs,

i.e., N =
∑
∀w∈∆ |D(w)|

n number of documents
Di document i

Database Search
v value
T input relational table

T j(v) set of tuple idendifiers that contain value v
in attribute j

∆j dictionary containing the distinct values
of attribute j

N number of tuples
m number of attributes
Ti tuple i

by accessing a poly-logarithmic number of extra memory ac-
cesses. Note that, this work does not require deep knowledge
on ORAM compilers because our proposed OSE scheme can
use any of these as a black-box; for further details we refer
the reader to the recent comprehensive analysis of Chang et
al. [13] that covers a wide spectrum of existing ORAMs.

2.2 Keyword Search vs. Database Search
SE was originally meant for private file/keyword search,

but recent works [19, 21] realized that SE can also be used
for database search, and in particular for point and range
queries. Keyword search and database search are very sim-
ilar problems assuming for simplicity that in the latter case
we want to support queries on a single attribute. Then, we
can map the notion of keywords to the notion of attribute
values, and the notion of documents to the notion of tu-
ples, which allows the utilization of SE for database search.
The only difference between these two problems is the fol-
lowing: While in the keyword search problem, two different
keywords can map to the same document, in the database
search problem, by definition of the problem, two different
values of the same attribute will never map to the same
tuple. For example, a patient cannot have more than one
date of birth or SSN number. Therefore, the database search
problem has less structural leakage. Table 1 summarizes the
most important notation used in this paper, and illustrates
the correlation between the keyword and database search.
Throughout this paper, and for simplicity and compatibil-
ity with prior works in SE we follow the keyword search
notation, unless stated otherwise.

Database search for multiple attributes. We can fur-
ther extend SE to support private database search on mul-
tiple attributes. The first solution is to create m copies of
the database, where m is the number of attributes, and use
SE to encrypt each copy with a different key. This solution
expands the space by a factor of m, but achieves optimal
leakage, since it treats each attribute separately. The sec-
ond solution considers only one copy of the database, but
it increases the leakage. In particular, we create a single

encrypted index for the values of all attributes by setting as
searchable value vi of attribute attrj , the value attrj ||vi. In
this case a tuple id will be found in exactly m searchable
values, leaking more information than before (e.g., the set
of tuples matching queries on two different attributes).

2.3 Searchable Encryption (SE) Definition
Let D be a collection of documents. Each document D ∈
D is assigned a unique document identifier and contains a set
of keywords from a dictionary ∆. We recall D(w) denotes
the document identifiers of documents containing keyword
w. SE schemes focus on building an encrypted index I on
the document identifiers. For simplicity, we only consider
the document identifiers instead of the actual documents
since these are encrypted independently and stored in the
server separately from the encrypted index I; whenever the
client retrieves a specific identifier during a search, he can
send it to the server in an extra round and the server can
send the corresponding documents back. Finally, N is the
data collection size, i.e., N =

∑
∀w∈∆ |D(w)|. A SE protocol

considers two parties, a client and a server and consists of
the following algorithms/protocols [16]:

• k ← KeyGen(1λ): is a probabilistic algorithm per-
formed by the client. It receives as input a security
parameter λ and outputs a secret key k.

• (stC , I) ← Setup(k,D): is a probabilistic algorithm
performed by the client prior to sending any data to
the server. It receives as input a secret key k and the
data collection D, and outputs an encrypted index I.
Index I is sent to the server. stC is sent to the client
and it contains only the secret key k.

• (X , st′C , I′)↔ Search(stC, w, I): is a protocol executed
between the client and the server, where the client in-
serts the secret state stC and a keyword w, while the
server inserts an encrypted index I. At the end of the
protocol the client learns X , the set of all document
identifiers D(w) corresponding to the keyword w and
the updated secret state st′C , while the server’s output
is the updated encrypted index I′.

We provide the security definition for the above SE scheme
that corresponds to the real-ideal world paradigm [16], with
a slightly modified syntax in order to match the security
definition of OSE.

Definition 1. Suppose (KeyGen,Setup, Search) is a SE
scheme based on the above definition, let λ ∈ N be the secu-
rity parameter and consider experiments Real(λ) and
IdealLSETUP,LQUERY (λ) presented in Figure 1, where LSETUP

and LQUERY are leakage functions to be defined next. We
say that the SE scheme is (LSETUP,LQUERY)-secure4 if for
all polynomial-size adversaries A there exist polynomial-time

4In prior works (LSETUP,LQUERY) is mentioned as (L1,L2),
where LSETUP or L1 refers to the total setup leakage, i.e.
leakage prior to the query execution, and LQUERY or L2 refers
to the total query leakage, i.e. leakage during the query
execution.



Real(λ) IdealLSETUP,LQUERY (λ)

k ← KeyGen(1λ)
(D, stA)← A(1λ) (D, stA)← A(1λ)
(stC , I0)←Setup(k,D) (stS , I0)←SimSetup(LSETUP(D))
for 1 ≤ i ≤ q for 1 ≤ i ≤ q
(wi, stA)← A(stA, Ii−1,M1, . . . ,Mi−1)* (wi, stA)← A(stA, Ii−1,M1, . . . ,Mi−1)*
(Xi, stC , Ii)↔Search(stC , wi, Ii−1) (Xi, stS , Ii)↔ SimSearch(stS ,LQUERY(D, wi), Ii−1)
let M = M1 . . .Mq, I = I0 . . . Iq and X = X0 . . .Xq let M = M1 . . .Mq, I = I0 . . . Iq and X = X0 . . .Xq
output v = (I,M,X ), stA output v = (I,M,X ), stA

* Let Mk be all the messages from client to server in the Search/SimSearch protocol above.

Figure 1: SE/OSE ideal-real security experiments.

simulators SimSetup and SimSearch, such that for all poly-
nomial time algorithms Dist:

|Pr[Dist(v, stA) = 1 : (v, stA)← Real(λ)]−
Pr[Dist(v, stA) = 1 : (v, stA)← IdealLSETUP,LQUERY (λ)]|
≤ negl(λ) ,

where probabilities are taken over the coins of KeyGen and
Setup algorithms5.

Figure 1 presents the real and ideal games for (semi-honest)
adaptive adversaries, as introduced in [15]. These games are
used to formally prove the security of an SE scheme. They
are partitioned into two worlds, the real and the ideal one.
The real world represents a real SE scheme, where the adver-
sary has access to the Setup and Search algorithms. More
specifically, the real scheme creates a secret key to which
the adversary does not have access. The adversary selects a
document collection which is given as an input to the Setup
algorithm. Furthermore, stA denotes a state maintained by
the adversary. The adversary observes the output of the
Setup algorithm which is the encrypted index. Then, she se-
lects a polynomial number of queries, and for each of these
queries she observes the corresponding tokens. Having these
tokens allows her to retrieve the encrypted result. In the
ideal world, the adversary interacts with the simulator. The
simulator S, neither has access to the real document collec-
tion, nor to the real queries. Instead, the simulator only has
access to predetermined leakage functions and by using these
functions and her state she attempts to “fake” the algorithms
Setup and Search. The adversary can only have access to one
world, either to the real one, or to the ideal one. We con-
sider only the strongest types of adversaries, i.e., adaptive
adversaries that can select their own new queries based on
previous ones. The adversary attempts to detect the world
to which she has access. We prove that an adversary can dis-
tinguish the output of the real world from that of the ideal
world only with negligible probability. This means that an
adversary cannot learn anything more, than the predefined
leakage. We refer the reader to [15, 19] for a more detailed
explanation of the security game.
The above security definition and leakages apply only to

static SE schemes. The extension of static SE schemes to
a dynamic setting requires guaranteeing a property called
forward privacy [48], where the server does not get to learn
that a newly inserted keyword,id pair satisfies a query issued
in the past.

5A function ν: N → N is negligible in λ, negl(λ), if for
every positive polynomial p(·) and all sufficiently large λ,
ν(λ) < 1/p(λ).

2.4 Oblivious RAM (ORAM)
Oblivious RAM (ORAM), introduced by Goldreich and

Ostrovsky [27] is a compiler that encodes the memory, such
that accesses on the compiled memory do not reveal access
patterns on the original memory. We give the definition
for a read-only ORAM as this will be a prerequisite in our
scheme—the definition naturally extends for writes as well:

• (σ,EM)← OramInitialize(1λ,M): takes as input the
security parameter λ and the memory array M of n
values (1, v1), . . . , (n, vn) and outputs the secret state
σ (for the client), and the encrypted memory EM (for
the server).

• (vi, σ,EM
′) ↔ OramAccess(σ, i,EM): is a protocol

between the client and the server, where the client’s
input is a secret state σ and an index i. The server’s
input is the encrypted memory EM. The client’s out-
put is the value vi assigned to i and the updated secret
state σ′. The server’s output is the updated encrypted
memory EM′.

Intuitively, an ORAM scheme guarantees that there is no
polynomial time adversary that can distinguish any of the
two executions of the same program with different inputs
of the same size. In particular, the adversary can pick the
initial memory and any two polynomial size sequences of
accesses y1 and y2 of the same length (|y1| = |y2|) and by
observing the oblivious accesses of o(y1) and o(y2) she will
not able to distinguish them, with non-negligible probability.
We refer the reader to [18] for the formal correctness and
security definitions of ORAM.

2.5 Leakage Functions
In total we present four SE constructions in this paper

that satisfy Definition 1 presented before. Each such scheme
has different leakage, as we detail in the following.

• A simple SE construction for keyword search (SE-K);

• A simple SE construction for database search (SE-D);

• An ORAM-based SE construction for keyword search
(OSE-K);

• An ORAM-based SE construction for database search
(OSE-D).

Every construction leaks different amount of information. In
Table 2 we show all the leakages in detail. We now explain
the intuition behind these leakages.



Table 2: Different leakages in our constructions.

construction LSETUP LQUERY

SE-K (N,n) (id(w),D(w))

SE-D N (id(v), |T j(v)|)
OSE-K (N,n) |D(w)|
OSE-D N |T j(v)|

Leakages for SE-K: Our simple SE construction for key-
word search leaks only the size of the index N and number of
the indexed documents n during setup. During a query for
w, it leaks (id(w),D(w)) where id(w) is a random-looking
λ-bit number that we map to each keyword w, called alias
of w (capturing the search pattern, i.e., whether a keyword
query has been repeated or not). The set D(w) captures the
access pattern, revealing which document overlaps between
previously queried documents.

Leakages for SE-D: The main difference here is in the
query leakage, where we leak the size of the access pattern,
instead of the access pattern itself. Also, since N = n in the
database search scenario, only N is naturally leaked.

Leakages for OSE-K and OSE-D As opposed to con-
struction SE-K and SE-D, our ORAM-based constructions
only leak the size of the result that is returned. We can con-
sider this leakage to be ideal for any scheme that supports
sublinear-time search, since in order to hide the size of the
result we will need to either download the entire encrypted
index, or equivalently to pad the result to the maximum
size. In both cases the size of each query answer will be
proportional to the input size, i.e. O(N).

2.6 Compression Schemes
Our implementation uses (variations of) two different com-

pression schemes, as we detail in the following.

FastPfor. FastPfor [38] is a modification of PforDelta [58].
Given a list of n integers, the algorithm begins by comput-
ing the deltas between two consecutive integers, and then
it proceeds to compress the deltas. For example, let I =
{2, 5, 10, 17}, then the deltas would be I ′ = {2, 3, 5, 7} where
I ′[0] = I[0] and I ′[i] = I[i]− I[i− 1](i > 0). The deltas are
then split into chunks of 128 deltas and each of the chunks is
compressed separately. For each chunk, the scheme chooses
the smallest b, such that a majority of elements (controlled
by a threshold, say 90%) can be encoded using b bits. The
chunks are then stored using 128 b-bit locations, in addition
to some extra storage for the values that could not be repre-
sented by the b bits (called exceptions). FastPfor enhances
PforDelta because it stores the exceptions more efficiently.

EWAH. EWAH (Enhanced Word-Aligned Hybrid) [39] is a
bitmap index compression algorithm, which is an enhanced
modification of WAH (Word-Aligned Hybrid) [56]. Both
algorithms belong to the RLE (Run Length Encoding) com-
pression family. Given a set of n integers, we first create
a bitmap in which we set the i-th element of the bitmap
to 1 if and only if i is present in the list of input num-
bers. In WAH, the input bitmap is then split into groups
of 31 bits. The groups are classified into two categories;

if all the bits in a group are identical we consider it to
be a filled group, otherwise a literal group. For exam-
ple, 0000000000000000000000000000000 (031 in short) is a
filled group. Filled groups can be further classified into 0-
fill groups (all bits are 0) and 1-fill groups (all bits are 1).
WAH compresses a sequence of consecutive filled groups of
the same type together using just one word. The scheme
stores each literal group using one word (32 bits).
For instance, if the input bitmap is 1020130111125 (160

bits), then WAH partitions it into 6 groups: G1 (10201307),
G2 (031), G3 (031), G4 (031), G5 (011120) and G6 (02615).
Then, WAH encodes G1 using (010201307), i.e. the first bit
is set to 0 denoting that it is a literal word and the remaining
31 bits containG1. Furthermore, it encodes G2, G3, G4, G5

together using (10027011), i.e. the first bit is set to 1 indi-
cating that it is a filled word, the second bit is set to 0
indicating that it is a 0-filled word and the remaining bits
are used to store how many consecutive 0-groups are stored
together. Finally, it encodes G5 using (0011120) and encodes
G6 using (002615).
EWAH is a modification of WAH because it addresses the

latter’s necessity to allocate too much space to store literal
groups. Unlike WAH, EWAH divides an uncompressed in-
put bitmap into 32-bit groups, whereas WAH uses 31-bit
groups. Then it encodes a sequence of p (p 6 65535) fill
groups and q (q 6 32767) literal groups into a marker word
followed by q literal words (stored in their original form).
The first word in EWAH is always a marker word.

3. OUR APPROACH
Our approach consists of two main steps: Given the dataset
D, in the first step we compress each list D(w); The second
step uses the output compressed lists (for all keywords w) as
input to the SE setup algorithm. When an encrypted search
query is performed, the accessed list is much smaller (due
to compression)—once we receive the compressed list, we
can decompress it and retrieve the result. Note that while
asymptotically the time required for the search is the same
as other schemes, the number of cryptographic operations
are only proportional to the size of the compressed list—
this leads to significant savings in practice as we show in
the experiments. We now describe various components of
our approach in more detail.

Uniform document identifier reassignments. Prior SE
schemes assume that for each document identifier we pick a
random string of τ bits. Note that performing compression
on random strings leads to almost negligible compression.
In our approach, instead of assigning a random string of τ
bits to each document identifier we assign an id chosen uni-
formly at random from the range [0, n − 1], where n is the
total number of documents in our collection. This uniform
reassignment of document identifiers is equivalent to having
random strings of τ bits (this will be part of our security
proofs). However, our approach leads to more efficient com-
pression of the encrypted keyword lists.

Compression and partitioning. As mentioned earlier,
instead of storing D(w) = {id1, . . . , ids} in the encrypted
index, we will store an encrypted version of that list, namely
the string Y = Compress(D(w)), computed using some com-
pression algorithm. Note that Y’s size is at most s logn



idw,1 idw,2 idw,3 idw,4 idw,5 idw,6

Y =

log n bits

≤ 6 · log n bits

Partition(Y)

λ bits λ bits

10

D(w)

Γ(w)

Compress(D(w))

6 document-ids

rank rank

Figure 2: Our scheme first compresses the keyword lists and
then performs the partitioning. Note that the packed words
need to be stored with a rank, so that the decompression
can work correctly.

bits meaning that the number of cryptographic operations
required to retrieve the compressed result is reduced—the
actual result can be easily retrieved from the compressed
result with no cryptographic operations.

We further partition Y to chunks of λ − logn bits (we
use logn bits to store the rank of the chunk as we explain
below), where λ is the security parameter. This assures we
“pack” the maximum amount of information into one PRF
evaluation. For example, we can partition Y into words G1,
G2 etc., ending up with approximately µ = |Y|

λ−logn
words

G1, G2, . . . , Gµ. Finally, we store in the encrypted index
the compressed list Γ(w) = {G1, . . . , Gµ}. Notice that in
the actual construction we store for each word its rank i by
attaching logn bits so that decompression works correctly.
Thus, each compressed word will have size λ bits. Our ap-
proach is described in Figure 2.

3.1 Choosing Compression Algorithms
We note that there are more than 20 different algorithms

for bitmap/inverted list compression — see [52], and there-
fore identifying the most suitable compression algorithm is a
challenging task. In this work we selected two compression
algorithms EWAH and FastPfor that take into considera-
tion the specialized structure of SE/OSE, i.e. how we can
efficiently compress |D(w)| uniformly distributed document
identifiers for each keyword w. We choose our compression
algorithm for each keyword list in a greedy fashion: Find
the best compression algorithm for each keyword list D(w)
individually, from a set of compression algorithms C and
store some extra metadata to denote which compression al-
gorithm was used. Below, we explain the reasons we chose
EWAH and FastPfor and in which ranges we expect that
each compression algorithm will be used in practice.
We chose EWAH for keyword lists of very large size. In

particular, we modify the EWAH algorithm to yield com-
pressed words of size φ = λ − logn, instead of the orig-
inal 32 bits. Setting the compressed words to have size
φ bits means that the maximum number of required com-
pressed words will be O(n

φ
). Intuitively, we expect that we

can benefit from this algorithm only when |D(w)| > n
φ
. If

|D(w)| < n
φ
then with high probability the expected load of

each compressed word will be ≤ 1, since the distribution of
document identifiers is uniform. In the latter case, we repre-
sent each document identifier with O(λ) bits, leading to no
compression. EWAH achieves savings only if D(w) > n/φ.
For example, in the extreme case that |D(w)| = n, then
EWAH will compress all the document identifiers in exactly
one compressed keyword with λ bits; in this case EWAH
achieves the best possible compression ratio.
We chose FastPfor for keyword lists with small, medium

and large sizes. In the extreme case, that |D(w)| = n, FastP-
for will compress keyword w using approximately O(n) bits,
since it will require at least 1 bit per delta. Thus, we expect
that EWAH will be superior for very large keyword-lists,
i.e. |D(w)| > c1 · n/λ (for some constant c1); FastPfor will
handle the remaining keyword-lists. However, there is not a
clear separation of the ranges where each of the above com-
pression algorithms will be better and so we follow a greedy
selection as we described above.
In the case that the compressed keyword-lists have size

greater than logn ∗ |D(w)| bits, we use the original uncom-
pressed representation. Notice that the greedy selection is
a viable solution and does not significantly affect the Setup
time, since the encryption cost is the dominant factor.

3.2 Our SE Construction
Our main SE construction is shown in Figure 3. Note

the random document identifier reassignment (Line 2 of the
Setup algorithm), compression (Line 4 of the Setup algo-
rithm) and partitioning (Line 5 of the Setup algorithm). In
particular, Setup works as follows. After parsing the in-
put index D the algorithm compresses each keyword list
D(wi) individually by greedily selecting the best compres-
sion method from the set of lossless compression algorithms
C (described in Section 3.1). Then, Setup performs parti-
tioning as described above to obtain the index Γ, which is
padded with up to N entries and encrypted using any SE
scheme as a black-box.
As shown in Figure 3 the algorithms KeyGen and Token

perform only calls to the blackbox algorithms SE.KeyGen
and SE.Token, respectively.
The Search algorithm is applied to an input keyword w,

in order to retrieve the list {1||G1, 2||G2, . . . , µ||Gµ} and de-
compresses the bit string G1||G2|| . . . ||Gµ using the same
compression algorithm c ∈ C that was used for compression.
Finally, it outputs the real document identifiers {id1, id2, . . .}.
Note that the utilized black-box SE scheme must leak the

actual access pattern (e.g., [10, 21]6), since otherwise our
construction is not correct. This is because randomizing
the identifiers in the black-box SE scheme would cause the
decompression algorithm to produce garbage. In addition, in
the keyword search problem it is not necessary for the used
black-box SE to leak both N and n; there are SE schemes
that leak only N . However, our construction additionally
leaks n—this allows us to define the domain from which we
draw the document identifiers.

6In the literature of SE schemes for the keyword search prob-
lem, some of the prior works [6, 18] focus for simplicity only
on retrieving the document identifiers of a queried keyword
w and not on getting the actual documents. These schemes
do not leak the actual access pattern, but only its size. How-
ever, it is easy to extend these schemes, such that they return
the actual documents and leak the actual access pattern.



k ← KeyGen(1λ)

1: k ← SE.KeyGen(1λ).
2: return k.

(stC, I)←Setup(k,D)

1: Set N = |{D(w)}w∈W|. Let n be the number of documents (n ≤ N).
2: Reassign document identifiers using a random permutation p : [n]→ [n] (i.e., document i becomes document p(i)).
3: for each w ∈W do
4: (Y, c)← COMPRESS(D(w), C). . C is a set of compression algorithms; c are the bits encoding this choice.
5: Write Y as G1||G2 . . . ||Gµ where Gi is a bit string of λ− dlogne bits (pad the last bit string if needed).
6: Set Γ(w) = {c, 1||G1, 2||G2, . . . , µ||Gµ}.
7: Pad Γ to have N entries. . We insert a dummy keyword which contains the necessary number of dummy values.a

8: I ← SE.Setup(k,Γ).
9: Set stC to include k.
10: return (stC, I).

(X , stC, I)↔ Search(stC, w, I)

1: (c, result)← SE.Search(stC , w, I).
2: Write result as {1||G1, 2||G2, . . . , µ||Gµ}.
3: X ← DECOMPRESS(G1||G2|| . . . ||Gµ, C, c).
4: return (X , stC, I).

aThis dummy keyword is never returned as part of any query.

Figure 3: Our more efficient SE construction using any SE and a set C of compression algorithms as black-box.

(I, stS)← SimSetup(LSETUP(D))

1: (N,n)← LSETUP(D).
2: (I, st)← SE.SimSetup(N).
3: Let A = {1, 2, . . . , n} be the set of document identifiers.
4: Let Previous and Access be empty hash tables.
5: return (I, (st, A,Previous,Access)).

(X, stS , I)← SimSearch(stS ,LQUERY(D, w), I)

1: Parse stS as (st, A,Previous,Access).
2: Let (id(w), R1, R2, . . . , Rs)← LQUERY(D, w).
3: if Previous.get(id(w)) 6= null then
4: return (Previous.get(id(w)), stS , I).
5: else
6: for i = 1, . . . , s do
7: if Access.get(Ri) = null then
8: Pick idi uniformly at random from A and set A = A− {idi}.
9: Access.put(Ri, idi).
10: else
11: idi ← Access.get(Ri).
12: (Y, c)← COMPRESS(id1||id2|| . . . ||ids, C).
13: Write Y as G1||G2 . . . ||Gµ where Gi is a bit string of λ− dlogNe bits (pad the last bit string if needed).
14: Set Γ(w) = {1||G1, 2||G2, . . . , µ||Gµ}.
15: (X , stS , I)← SE.SimSearch(stS ,Γ(w), I).
16: Parse X as (c, result) and compute X ′ ← DECOMPRESS(result, C, c).
17: Previous.put(id(w),X ′).
18: Update stS with the new values of (st, A,Previous,Access).
19: return (X ′, stS , I).

Figure 4: Simulator algorithms SimSetup and SimToken for SE (keyword search problem)



Proof of security. We will now prove security of our SE-
K construction, assuming the black-box SE scheme we use
is (L1,L2)-secure where L1 leaks only the size of the index
N (but not the number of documents n) and L2 leaks the
search pattern and access pattern. We provide the proof for
the keyword search problem; proofs for the database search
problem are easily derived from the proof we present.

Theorem 1. Let LSETUP, LQUERY be the leakages defined
in Section 2.5 for the SE-K construction. If the SE scheme
used as a black-box in our construction of Figure 3 is (L1,L2)-
secure according to Definition 1, then our SE-K construction
of Figure 3 is (LSETUP, LQUERY)-secure.

Proof. Our black-box SE scheme is (L1,L2)-secure, we
use its SE.SimSetup and SE.SimSearch algorithms. Our sim-
ulator SimSetup(LSETUP(D)) and SimSearch(LQUERY(D, w))
is described in Figure 4.
For the first part of the proof, we must show that no PPT

algorithm Dist can distinguish, with more than negligible
probability, between the index Ireal output by Setup(k,D)
and the index Iideal output by SimSetup(LSETUP(D)). This
is because both Ireal and Iideal have the same number of
entries and the black-box SE is (L1,L2)-secure.
For the second part of the proof we need to prove that

Dist cannot distinguish between the outputs of Search(k,w)
and the output of SimSearch(stS ,LQUERY(D, w)).
First, both Search and SimSearch produce the same mes-

sages, i.e. tokens and results, for the same repeated key-
words. SimSearch uses the search pattern leakage Previous
included in stS . Second, for a keyword w that has not been
queried before, it is enough to show that the distribution of
Γ(w) in Line 6 of Setup and the distribution of Γ(w) in Line
14 of SimSearch are identical. If so, the security will follow
from the existence of a simulator of the black-box secure SE
scheme. It is easy to see that the aforementioned distribu-
tions are identical. In the real game, the document identi-
fiers that are compressed are chosen uniformly at random
due to the random permutation at Line 2, and in the Sim-
Search algorithm the identifiers are again picked uniformly
at random from A at Line 8, every time a new keyword
comes in. The simulator also correctly simulates the over-
lapped document identifiers between different queries using
its state stC and the access pattern leakage—see Lines 2 and
11.

Choosing the black-box SE: Our solution can achieve a
high degree of parallelism, good locality trade-offs and dy-
namism, when selecting the SE black-box scheme to be the
optimal read efficiency scheme proposed in [21]. According
to [7], the latter scheme achieves optimal space and local-
ity trade-offs since it matches a lower-bound for schemes
with optimal read efficiency. The composition of our scheme
with the above provides very efficient search time for both
in-memory and external memory settings in the standard
SE leakage profile. The schemes of [21] with non-optimal
read efficiency have different leakage profile; however our
scheme can use them as a black-box inheriting all the differ-
ent trade-offs that they provide, but in that case our scheme
will inherit also their leakage profile. Our solution can also
be extended to the dynamic case achieving forward privacy
(desired property for dynamic SE — see [48]) using the so-
lution proposed in [19, 21].

3.3 Our OSE Construction
Our OSE-K/OSE-D construction is shown in Figure 5 and

is based on modifying the SE construction presented in the
previous section. The main difference is that instead of using
a SE scheme as a black-box, we now use an Oblivious RAM
scheme for that purpose. We summarize these modifications.

• The Setup algorithm uses Lines 4 to compute the op-
timal worst-case number of compressed words µ0, i.e.,
it computes for each used compression algorithm the
worst-case required number of compressed words (for
a given n and |D(w)|) and chooses the most efficient
one (we will explain the intuition behind this point
below). In Line 8, list Γ(w) is padded to contain ex-
actly µ0 compressed words. In Line 9, Γ is padded to
have 2 ·N entries. In Line 10, Setup computes the en-
crypted index using OramInitialize, i.e., (stC , I) ←
OramInitialize(k,D) and in Line 11 it outputs (stC, I).

• The Search algorithm calls OramAccess as many times
as necessary to receive the entire compressed result,
i.e., ∀i ∈ [0, µ+ 1) we call

(X , st′C , I′)↔ OramAccess(stC , stC .pos(G||i), I) .

The client’s state stC , comprises all the information
that the client needs to know in order to retrieve each
Gi, i.e., a mapping indicating that Gi is stored in index
j (this mapping is called position map and we denote
it as stC .pos(Gi)—we will further explain the notion
of position map below).

Important observation concerning security. We ob-
serve that in the SE construction (Figure 3) a keyword-list
of |D(w)| size may be compressed into µ compressed words
in one execution, while in another execution it may be com-
pressed into µ+1 compressed words. However, as we proved
this does not induce any security issues, since in both cases
the distributions of the document identifiers are the same.
Therefore, even if the adversary queries the same keyword
multiple times, the simulator will simulate the query only
the first time and for any subsequent execution of the same
query she will use the search pattern leakage to return the
previously chosen result (see Line 11 of Figure 4). A very im-
portant difference between the SE and OSE constructions is
that the latter does not leak the search pattern, i.e., whether
two encrypted search queries are the same. Let us consider
the case of an adversary querying the same keyword w1 mul-
tiple times in our OSE construction. In that case Setup will
always produce the same number of compressed words µ,
while SimSetup might yield a different number of compressed
words in every execution.
In order to address the aforementioned problem, it is re-

quired that all keyword lists of the same size s to have
the same number of compressed words. To achieve this,
WORST-COMPRESSION (in Line 4) computes for each
c ∈ C the worst-case compression (given n, s and C) and re-
turns the best algorithm c, and the worst-case number of
compressed words µ0 for c. Now, we first compress the list
D(w) as before (see Lines 5-7) and then pad it to size µ0

(Line 8).
We note here that computing µ0 is easy for some algo-

rithms, e.g., WAH, EWAH but for other algorithms, such



k ← KeyGen(1λ)

1: k ←$ {0, 1}λ.
2: return k.

(stC, I)←Setup(k,D)

1: Set N = |{D(w)}w∈W|. Let n be the number of documents (n ≤ N).
2: Reassign document identifiers based on a random permutation p : [n]→ [n].
3: for each w ∈W do
4: Compute (µ0, c)← WORST-COMPRESSION(|D(w)|, n, C).
5: (Y, c)← COMPRESS(D(w), c).
6: Write Y as G1||G2 . . . ||Gµ where Gi is a bit string of λ− dlogne bits (pad the last bit string if needed).
7: Set Γ(w) = {c, 1||G1, 2||G2, . . . , µ||Gµ}.
8: Pad Γ(w) to have exactly µ0 bit-strings of the form x||Gx.
9: Pad Γ to have 2 ·N entries. . We insert a dummy keyword which contains the necessary number of dummy values.a

10: (stC , I)← OramInitialize(k,Γ).
11: return (stC , I).

(X , st′C , I′)↔ Search(stC , w, I)

1: i = 0.
2: while Gi 6= ⊥ do
3: (Gi, st

′
C , I′)↔ OramAccess(stC , stC.pos(w||i), I).

4: I ← I′, stC ← st′C , i← i+ 1.
Write result as {1||G1, 2||G2, . . . , µ||Gµ}.

5: X ← DECOMPRESS(G1||G2|| . . . ||Gµ, C, c).
6: return (X , st′C , I′).

(I, stS)← SimSetup(LSETUP(D))

1: Let (N,n)← LSETUP(D, w) and compute (I, st)← SimOramInitialize(2 ·N).
2: return (I, st).

(X , stS , I)↔ SimAccess(stS ,LQUERY(D, w), I)

1: Let s← LQUERY(D, w), (N,n)← LSETUP(D, w).
2: Compute (µ0, c)← WORST-COMPRESSION(s, n, C).
3: for i = 1, . . . , µ0 do
4: Pick a random index ind.
5: Compute (X , st, I′)↔ SimOramAccess(stS , ind, I).
6: Set I ← I′ and update stS with the new values of st.
7: return (X , stS , I).

aThis dummy keyword is never returned as part of any query.

Figure 5: Our OSE-K construction and the simulator algorithms SimSetup and SimToken using an Oblivious RAM and a set
C of compression algorithms as black-box.

FastPfor, it is not. It is also possible that the worst-case
compression for some algorithms to be very close to the un-
compressed size, e.g. VB compression algorithm described
in [17]. For compression algorithms in which computing the
worst-case compression is either not viable in practice or
the compression ratio is close to 1, we use an alternative
methodology. We choose for each n and s a predefined µ0,
and we store the overflowed lists (µ−µ0) in a local stash in
the client side. It is a good practice to choose µ0 to be the
expected number of compressed words (for a given n and s).

Proof of security. We will now prove the security of our
OSE-K construction, assuming the black-box ORAM we use
is secure and assuming that µ0 > µ always hold for Lines
4-8 :

Theorem 2. Let LSETUP, LQUERY be the leakages defined
in Section 2.5 for OSE-K. If the ORAM scheme used as a
black-box in the construction of Figure 3 is secure, then our
OSE-K construction of Figure 3 is (LSETUP, LQUERY) secure.

Proof. The deployed black-box ORAM scheme is con-
sidered to be secure, so our proof uses its SimOramInitialize
and SimOramAccess. Our simulators SimSetup(LSETUP(D))
and SimSearch(LQUERY(D, w)) are shown in Figure 5.
For the first part of the proof, we show that no PPT Dist

algorithm exists that can distinguish, with more than neg-
ligible probability, between the index Ireal and the index
Iideal since both have the same number of entries and the
black-box ORAM scheme is secure. For the second part
of the proof, we show that no PPT algorithm Dist exists



that can distinguish, with more than negligible probability,
between the index Search and the index SimSearch, for the
following reasons; (i) both Search and SimSearch produce in-
distinguishable messages, (ii) in both cases Dist observes the
same number of ORAM accesses, (iii) ORAM being secure
implies that Search and SimSearch are indistinguishable with
non-negligible probability.

Choosing the ORAM black-box: Our OSE schemes can
use any secure ORAM as a black-box. For instance, we
propose using any Square Root ORAM, hierarchical-based
ORAM or tree-based ORAM. The main efficiency metrics
for an ORAM scheme are: (i) Amortized overhead, (ii)
Worst-Case Overhead, (iii) Storage, (iv) Client Storage. In
our solution we assume for simplicity reasons that the client
locally stores a position map, i.e., a data structure that
maintains mappings of specific keyword,id pairs to their cur-
rently stored indexes j in the ORAM. Different families of
ORAM schemes stores a position map in different ways. For
instance, PathORAM proposes a solution that increases the
overhead and recursively outsources the position map in an
oblivious manner. This work we suggest that any tree-based
approach with the minimum worst-case overhead even if it
stores the position map locally on the client, such as the non-
recursive PathORAM, to be a good candidate for constitut-
ing the ORAM black-box. We can outsource the position
maps using the notion of oblivious data structures described
in [55] without increasing the worst case overhead (we create
a single-linked list connecting all Gi together, each Gi will
store the position of Gi+1, we store G1 in an oblivious data
structure and the remaining Gi in PathORAM). Creating a
practical OSE scheme combining PathORAM with the idea
of oblivious data structure requires in total, O(N) space,
O(log2 N) worst-case overhead for result sizes smaller than
O(log2 N) ids, O(logN) worst-case overhead for result sizes
greater than O(log2 N) and client storage of O(log2 N) ·ω(1)
ids. We omit providing further details on combining PathO-
RAM with oblivious data structures, as our OSE construc-
tion is generic and can improve the search performance of
an OSE scheme using any ORAM as black-box. We further
refer the reader to the recent work of Chang et al. [13] for a
comprehensive evaluation of various ORAM protocols.

4. EXPERIMENTS
In this section we experimentally evaluate the performance

of our proposed schemes. We call the SE construction of sec-
tion 3.2 as microSE and the OSE construction of section 3.3
as microOSE. We select the SE black-box scheme to be the
basic construction of Cash et al. [10] as it is the state-of-the-
art in-memory SE scheme with linear size encrypted index
(it requires N encrypted entries) and we refer to it as PiBas.
We did not choose the scheme with optimal read efficiency of
Demertzis and Papamanthou [21] since it requires sN space;
for s = 1 both schemes have the same performance; for s > 1
the optimal read efficient scheme of [21] outperforms PiBas
at the cost of more space. Furthermore, we denote by “mi-
croSE(PiBas)” that microSE uses PiBas as a black-box. We
choose PathORAM [49] to be the black-box ORAM scheme
for microOSE (microOSE(PathORAM )) and for simplicity
we store the position map locally.

We evaluate the performance of microSE(PiBas) and com-
pare it to one of the original PiBas scheme in order to il-
lustrate the superiority of microSE; similarly we compare
microOSE(PathORAM ) to PathORAM.

4.1 Setup
We carried out the implementation of our schemes, PiBas

and PathORAM in Java. Our experiments were conducted
on a 64-bit machine with an Intel Xeon E5-2676v3 and 64
GB RAM. We utilized the JavaX.crypto library and the
bouncy castle library [1] for the cryptographic operations7.
In particular, for the PRF and randomized symmetric en-
cryption implementations we used HMAC-SHA-256 and AES128-
CBC, respectively, for encryption. The compression algo-
rithms that we use are FastPfor [37] and EWAH [36] (with
compressed keywords of size λ bits). We consider the fol-
lowing two datasets in our experimental setting. The first
dataset is a real dataset [2] consisting of 6, 123, 276 tuples
with 22 attributes of reported incidents of crime in Chicago [2].
This is a typical database table, which does not have inter-
sections between the keywords (database search). We con-
sider the first query attribute to be the location description
attribute which is an attribute following a skewed distri-
bution containing 173 distinct keywords (this is the x-axis
in Figures 7(a),and 7(b)). Among these keywords the one
with minimum frequency contains 1 record, while the one
with maximum frequency has 1, 631, 721 records. We also
consider the attribute date that does not follow a skewed dis-
tribution, in order to show the difference between a skewed
and a “non-skewed” distribution in the database search case.
The date attribute contains 58, 404 distinct keywords (this
is the x-axis in Figures 8(a) and 8(b)). Among these key-
words the one with minimum frequency contains 1 record,
while the one with maximum frequency has 14, 564 records.
In Figure 10(a). we provide the mean and best compression
ratio for all the 22 attributes.
For our second dataset, we use the Enron email dataset [3],

which consists of 30, 109 emails from the “sent mail” folder
of 150 employees of the Enron corporation that were sent
between 2000 − 2002. We extracted keywords from this
dataset. The words were first stemmed using the stan-
dard porter stemming algorithm [44], and then we removed
200 stop words.This dataset contains 76, 577 distinct key-
words (this is the x-axis in Figures 9(a) and 9(b)). Among
these keywords the one with minimum frequency contains 1
document-id, while the one with maximum has 24, 642 ids.

4.2 microSE/microOSE Evaluation
Index Costs. In the first set of experiments we evaluate the
required index size and construction time of our scheme for
different dataset sizes N . The results are shown in Figure 6.
The construction time includes the I/O cost of transferring
the dataset from the disk to the main memory, and the index
size represents only the size of the encrypted index. More-
over, we partition the initial dataset into 12 sets of 500K
tuples each, chosen uniformly at random from the entire
7We highlight that our Java implementation does not use
hardware supported cryptographic operations. However, this
does not affect our conclusions on the superiority of our pro-
posed constructions. The use of hardware supported crypto-
graphic operations will drastically improve both, the original
constructions of PiBas and PathORAM, as well as our own
microSE(PiBas) and microOSE(Path) based constructions,
thus maintaining the exact same “speed-up”.
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Figure 7: Search costs - Crime Dataset (Location attribute)

dataset. Then, we begin with the first partition and consider
the other partitions in each step in order to represent the
construction time (Figure 6(a)) and the index size (Figure
6(b)), as the size of the input gradually increases. Since we
perform the same amount of work for every partition while
building up the index, the storage and construction time re-
quired is linear in the number of partitions (or input size).
Figure 6 reflects this observation. We observe that both mi-
croSE(PiBas) and PiBas have the same index costs, since
microSE(PiBas) performs padding to have exactly the same
encrypted index size with PiBas, the same applies for mi-
croOSE(PathORAM ) and PathORAM. We highlight that
the padding in the case of microSE affects only the setup
costs since the inserted dummy records are never returned
as part of any query, while in the case of microOSE it may
slightly affect the query costs (depending on how we handle
the overflowed lists), but the returned compressed response
cannot exceed the uncompressed.

Search Cost. In this set of experiments, we illustrate the
total time required by the server to retrieve and find the
tuple-ids or document-ids for each query. For visualization
purposes, we sort the queries based on their result size in
descending order and we query each of them, i.e. x-axis for
value x=0 depicts the query with the largest result size. In
Figure 7(a) we observe the search time and in Figure 7(b)
the number of cryptographic operations for the location de-
scription attribute both for microSE and microOSE. Simi-
larly, in Figure 8(a) we observe the search time and in Fig-
ure 8(b) the number of cryptographic operations for the date
attribute. In the case of microOSE, we calculate a specific
µ0 for a given size, by estimating heuristically its expected
value for a given n, |D(w)| and we store the overflowed lists
in a local stash γ on the client side. We experimentally ob-
served that local stash γ was always smaller than the stash
of PathORAM.
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Figure 9: Search costs - Enron Dataset

The maximum speed-up for the location description at-
tribute is 62× both for microSE and microOSE, while for
the date attribute the corresponding number is 21×. The
location description attribute presents a more skewed distri-
bution, as it contains high-frequency keywords. Note that
more tuple-ids per keyword lead to a better compression
ratio. microSE and microOSE have the same performance
because in both cases they take advantage only of the size
of each query.
In Figure 9(a), we observe the search time and in Fig-

ure 9(b) the number of PRF evaluations for the Enron dataset.
In the case of SE we achieve up to 188× speed-up, while in
the case of OSE the speed-up was similar since in both case
the compression takes advantage of the total number of doc-
uments and the size of each query.
In Figure 10(a), we use microSE for all the 22 attributes

of the Crime dataset and we report the best and the mean
speed-up that we achieve. We observe that for the attributes
1, 2 the compression ratio is 1, which means that no com-
pression is achieved. The reason is that the first 2 attributes
contain unique values, so every value has result size 1, which
is the minimum number of cryptographic operation that we
have to perform. We also observe that attributes 8, 9 achieve
higher compression ratio than the other attributes (up to
166×, 203× respectively); the reason is that these are bi-
nary attributes (true or false) and the sizes of their values
are proportional to the database size (attribute 8: whether
an arrest was made or not, attribute 9: whether the incident
was domestic-related or not).

Dynamic costs. In this set of experiments, we consider the
case of dynamic microSE which is addressed as described in
[19]. For these experiments, we fix the consolidation step s
that is described in the original paper, to 2. This means that
after every 2 new indexes, we initiate a consolidation phase
that merges one or more indexes in order to construct a new
one. The batch size is set to 100, 000 updates. Figure 10(b)
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Figure 10: Additional Experiments (Crime Dataset)

plots the time required for dynamic microSE(Pibas) (labeled
as “Incremental Updates”) to maintain the index, when con-
sidering 10Mbps network bandwidth. This experiment in-
cludes the time required for downloading, decrypting, re-
constructing (merging), re-encrypting and uploading the in-
dexes. As a reference, the plot also includes the cost required
by static microSE(Pibas) to build the same index (including
the time for uploading the index), assuming that the whole
dataset is made available at once (labeled as “Static Con-
struction”). We can also use the same approach in order to
extend microOSE to the dynamic setting; the update costs
will follow the same pattern but they will be scaled by a
constant factor.

5. CONCLUSIONS
In this work we propose new searchable encryption schemes

to address a new efficiency dimension, namely the number
of cryptographic operations required to retrieve the result of
a query. We present two new schemes, microSE and mi-
croOSE, that use compression techniques in order to reduce
the size of the plaintext indexes before producing the en-
crypted searchable indexes using any SE/OSE as a black-
box. Our schemes achieve significant savings in search time
both for private database search and keyword search, while
at the same time any future advances in the active research
area of SE and ORAM can be readily incorporated into our
proposed constructions.
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